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Abstract. Smartphones have already been used to capture wheelchair maneu-

vering data to analyze a wheelchair user’s activity level, which is directly relat-

ed to his/her quality of life. Typically, the inertial sensors (e.g., accelerometer 

and gyroscope) in a smartphone are used for data collection. However, the lim-

ited battery life of the smartphone has become a major barrier to effective data 

collection. The sampling rate, as a primary configurable parameter of an inertial 

sensor, may have important impact on power consumption. Presumably, a lower 

sampling rate would consume less battery power. However, it may compromise 

the accuracy of data analysis.  In this study, we investigate how the sampling 

rate of inertial sensors impacts the battery power consumption as well as the ac-

curacy of data analysis.  The four pre-defined sampling rate settings of the An-

droid OS were evaluated for their impact on the smartphone’s power consump-

tion. Additionally, we also measured the accuracy differences of the four sam-

pling settings by comparing the sensor data-derived wheelchair maneuvering 

distances with the actual distances. The experimental results showed that it is 

possible and practical to balance the power consumption and data analysis accu-

racy by switching between appropriate sampling rate settings. 

Keywords: smartphone, inertial sensors, power wheelchair, power consump-

tion, sampling rate 

1 Introduction 

Physical activity is associated with a decrease of depression and anxiety effects while 

enhancing the psychological well-being of individuals [1]. Unfortunately, only 15 

percent of Americans achieved the recommended level of physical activity [2]. For 

wheelchair users, the situation is even worse since they face a higher risk of certain 

serious diseases due to their limitation of physical activities. For instance, a wheel-

chair user with spinal cord injury (SCI) suffers a significant higher rate (225%) of 

mortality due to the coronary heart disease than normal people [3].  



Nowadays smartphones have found the way into our daily lives. Smartphones are 

usually equipped with a rich set of sensors, e.g., accelerometers, gyroscope, compass, 

GPS, etc. [4]. Due to its prevalence and functionality, smartphones can be an ideal 

choice for wheelchair users to monitor their daily activities and collect wheelchair 

maneuvering data for the subsequent analysis [5, 6]. It is then possible to quantify the 

wheelchair users’ physical activities and motivate them to be more active and healthi-

er to improve their quality of life [7]. 

A problem of using smartphones for activity monitoring is that they have only lim-

ited battery life, which will be a serious barricade between high accuracy and the 

service time. When a smartphone’s inertial sensor is working at a high sampling rate, 

it will generate a large volume of data and consequently cause heavy workload on 

networks and/or system storage, which can drain the battery rapidly. On the other 

hand, if a low rate setting is applied, it may yield unsatisfying accuracy in data analy-

sis. In this study, we aim to investigate the effect of sensor sampling rates on the 

power consumption as well as how to configure the inertial sensors to collect accepta-

ble accurate data while consuming relatively low energy. 

This paper is organized as follows. Section 2 introduces the related research works, 

and limitations on smartphone inertial sensors and the power consumption. Section 3 

presents our evaluation method on power consumption of the 4 pre-defined sampling 

rate settings. Section 4 shows the experimental results and discussion of the evalua-

tion. Section 5 concludes the paper with our consideration on balancing power con-

sumption and analysis accuracy. We also identified our contributions to researches in 

similar areas. 

2 Related works 

In order to address the balancing issue between energy and accuracy, a lot of works 

need to be done on smartphone network connection, operating system (e.g. Android, 

iOS), programming and configuration [8-11].  

A recent research in [12] evaluated some major inertial sensors on a Google Nexus 

4 smartphone for accuracy, sampling frequency, sampling period jitter and power 

consumption of two pre-defined sampling rate settings. The authors demonstrated that 

the inertial accelerometers and gyroscope could offer reliable readings and the “Nor-

mal” setting consumed 25%-28.6% less power than the “Fastest” setting during one 

hour. The authors did not present further data analysis for other sampling settings or 

practical applications. In order to see the impact of power efficiency of each subsys-

tem and/or app running on a smartphone, Gordon et al. developed a power monitoring 

app [13] to directly demonstrate and record the battery usage status. This app can 

collect consumed power data for the major system components on a smartphone. 

However, currently this app mainly works for HTC G1, G2 and Nexus One phones 

and may only obtain rough results on other phones [13]. Another app related to 

smartphone energy consumption is a benchmark suite [14], which provided energy 

evaluation for smartphone platforms by executing a series of representative applica-
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tions. This benchmark suite can evaluate mobile systems from architectural aspects 

and mainly focused on the application cores, memory and storage subsystem. 

For power saving approaches, Qiu et al. proposed an algorithm [9] based on dy-

namic voltage scaling (DVS) to reduce the total energy consumption for smartphones 

for up to 34.2%. The algorithm focused on CPU voltage and OS concerns, but did not 

consider the inertial sensors. For the GPS sensor in [15], a power efficient touring 

scheme (PETS) is presented for smartphone power saving. This scheme adjusts the 

sampling rate of GPS dynamically to keep yielding accurate positioning for pedestri-

ans with 45% less power consumption. Another way for energy management is to 

switch between working and sleeping mode. A mode, namely, O-Sleep was given in 

[16], which could make a smartphone UI to sleep when no meaningful output was 

detected. The authors reported that it could save 37% of the power consumption in the 

experiments for some key applications, e.g., Internet browsing, email sending, Face-

book accessing of different scenarios. Network connection type is a crucial concern 

for cloud and mobile computing. Hence, a measurement was taken in [17] included 

Wi-Fi, 2G and 3G networks on Samsung Galaxy SII and SIII phones. The Wi-Fi con-

nection is found to consume by far the least energy for the same uploading task. Addi-

tionally, the author also proposed an energy consumption model, which can help de-

cide whether to migrate computational tasks to the cloud or take a local processing. 

In this paper we tried to find out a solution to balance the power consumption and 

data analysis accuracy. To the best of our knowledge, this is the first study that aims 

to investigate the impact of sensor sampling rates on battery power consumption and 

data analysis accuracy.  

3 Method 

We have developed an Android app to capture and transmit wheelchair maneuvering 

data to a cloud computing environment for storage and analysis [5] as shown in Fig. 

1. 



 

Fig. 1. The Android app for this study 

This app controls the accelerometer and gyroscope in a smartphone for data collec-

tion. Specifically, it captures accelerations in 3 axes (x, y and z) with the accelerome-

ter and collects angular velocities (yaw, pitch and roll) with the gyroscope, as shown 

in Fig. 2. In addition, this app can monitor power consumption by periodically record-

ing battery voltage and percentage. The Android system predefines four sampling 

settings, namely, Fastest, Game, Normal and UI. We tested two LG Nexus 5 

smartphones and found that the actual sampling rates ranged from 4-134 Hz for these 

predefined settings. As shown in Fig. 1, our app allows users to either select sampling 

setting or define the sampling rate by themselves. The recorded power consumption 

data is saved in a local file on the smartphone. The purpose is to save battery power 

by alleviating the network load, i.e., only wheelchair maneuvering data is transmitted 

to the cloud. 

The Android app was designed to be easy-to-use. The user can simply click the 

button in the center of the interface, and then the app will start to collect and transmit 

data to the cloud. The app also offers the option of storing wheelchair maneuvering 

data locally on the phone (i.e., by selecting the “Excel” option). 
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Fig. 2. Three axes of a smartphone 

3.1 Experiments for Evaluating How the Sampling Rate Impacts Power 

Consumption 

In the Android OS context, the sensor reading is event-driven, i.e., a data item is read 

whenever the sensor detects a change. We have conducted an experiment to investi-

gate how the sampling rates impacts battery power consumption. Table 1 illustrates 

and explains the four predefined settings of sampling rates for an inertial sensor sup-

ported by the Android SDK [18]. Since the sampling rate for each setting is not fixed, 

but falls within a range, the smartphone app also keeps the time when a data item is 

read, i.e., the timestamp for each data item. 

Considering the fact that the Android OS is a multi-tasking system, it allows dif-

ferent applications to run simultaneously. To avoid the disturbance from other appli-

cations, we performed a factory-reset and only kept necessary system apps. Then, we 

installed our app for data collection and power consumption monitoring. The same 

experiment was performed for each sampling setting for five times in order to guaran-

tee a sturdy result. To ensure the fairness of comparisons, the smartphone (LG Nexus 

5) was fully charged before any experiment. During each experiment, the app kept 

collecting accelerometer and gyroscope data for 120 minutes. The battery power con-

sumption, in terms of battery percentage and voltage, was recorded every 10 minutes. 

 

 

 



Table 1. Sampling settings of inertial sensors (unit: Hz) 

Option Sampling rate Description 

 
Accelerometer Gyroscope  

SENSOR_DELAY_FASTEST 127-134 46 - 49 get sensor data as fast as possible 

SENSOR_DELAY_GAME  46 - 49 46 - 49 suitable for games 

SENSOR_DELAY_UI  14 - 16 14 - 16 suitable for the user interface 

SENSOR_DELAY_NORMAL  14 - 16  4  -  6 
suitable for screen orientation 

changes 

 

3.2 Experiments for Evaluating How the Sampling Rate Impacts Data 

Analysis Accuracy 

In this experiment, we conducted experiments to evaluate how the sampling rate im-

pacts data analysis accuracy. Particularly, we use wheelchair maneuvering distance as 

the evaluation metrics for analysis accuracy. During the experiments, we still used the 

LG Nexus 5 smartphone, which was installed on the left armrest of a wheelchair and 

was oriented with its Y-axis aligned to the driving direction as shown in Fig. 3.  

 

         

Fig. 3. The smartphone and the wheelchair 

Additionally, we attached an ActiGraph sensor on each side of the wheels to obtain 

referential distances [19, 20]. The maneuvering data was collected inside an academic 

building for 20 trials for each of the 4 predefined sampling rate settings. During a 

trial, the wheelchair would be driven for a distance of 60.855±1.847 meters and 

would make four 90-degree and one 180-degree turns. Hence, the trials included ma-

jor wheelchair maneuvers for the user’s daily activities. 

After data is collected, we performed noise reduction and distance calculation using 

the approach we proposed in [21]. We developed a k-nearest neighbors (KNN) algo-
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rithm that could classify fine-grained wheelchair maneuvers. First, the wheelchair 

maneuvers were classified into 8 classes, namely, idle, acceleration, deceleration, 

constant speed, left turn, right turn, spot turn to left, and spot turn to right. The train-

ing samples for KNN were setup by pre-collected data. Since the Y axis of the 

smartphone was oriented to the driving direction, acceleration data in the Y axis was 

used for classification. The data sequence was divided into data segments, with each 

segment containing 10 consecutive data elements. We used 40 training samples for 

each class of the wheelchair maneuvers (totally 320 samples for 8 classes). The ma-

neuvering class was determined by the majority of the nearest neighbors. To deter-

mine the nearest neighbors, the Euclidian distance was used for measuring the dis-

tance between the testing data and each of the training samples. Once the maneuver-

ing class was obtained, we used the trapezoidal rules [22] to calculate distances for 

the moving maneuvers individually. The overall distance was obtained by summing 

up the individual distances. As a result, the accumulated errors were significantly 

reduced.  

4 Results 

Fig. 4 illustrates the experimental results for battery power consumption which was 

introduced in Section 3.1. The smartphone indeed consumed the most battery power 

with the “Fastest” setting: after 120 minutes, the smartphone consumed 50% of the 

total battery power. When it worked with the “Normal” setting, it only consumed 

28%. Moreover, the “UI” and “Normal” settings had very close power consumption 

due to their similar sampling rates for accelerometers.   

 

 

Fig. 4. The battery power drop percentage for different sampling settings 
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 Table 2 displays the distance calculation accuracy. The “Fastest” setting had the 

smallest average error, while the “Normal” setting had the largest. Furthermore, sta-

tistical significance existed only between the “Fastest” and “Normal” settings 

(p=0.024). Thus, we will not experience significant accuracy loss if we configure the 

app to collect data with a lower sampling rate, such as the “UI” or “Game” setting. 

Table 2. Relative error of distance calculation on different rates (unit: %) 

 
Fastest Game UI Normal 

Min. error 0.73 0.08 5.49 6.23 

Max. error 28.6 34.05 27.39 31.71 

Avg. error 9.86 13.00 13.09 14.82 

 

5 Discussion and Conclusions 

In this study, we aimed to investigate how to balance the battery power consumption 

of smartphones and data analysis accuracy through adjusting inertial sensors’ sam-

pling rates. Correspondingly, we conducted two types of experiments to evaluate how 

the sampling rate of inertial sensors impacts battery power consumption as well as 

data analysis accuracy. Experimental results confirmed that higher sampling rates 

indeed consumed more battery power. As shown in Fig. 4, the battery power was 

consumed almost linearly as time elapsed. The higher sampling rate corresponded to a 

steeper slope. Hence, to save battery power, a lower sampling rate is preferable. In 

addition, the experiment for evaluating data analysis accuracy demonstrated that 

higher sampling rates achieved relatively better analysis accuracy (as shown in Table 

2). It appears that a higher sampling rate is preferred if we desire to achieve good 

analysis accuracy. The good news is that the accuracy differences are not statistically 

significant between “Fastest” and “Game”, and between “Fastest” and “UI”. Hence, 

the sampling rates of “Game” or “UI” may be a good tradeoff, which balances battery 

power consumption without significantly decreasing data analysis accuracy. 

Based on information obtained from this study, we will develop a context-aware 

algorithm in our future work, which can adjust the sampling rate of an inertial sensor 

based on the actual context, e.g., stationary, moving, etc., to achieve efficient power 

consumption while maintaining satisfactory data analysis accuracy. 

Study limitations exist in this study. First, we only tested the LG Nexus 5 

smartphone. Different smartphones may demonstrate different power consumption 

patterns. Second, we only used the wheelchair maneuvering distance as the metric to 

evaluate the impact of inertial sensor’s sampling rates. In the next step, we will test 

other brands of Android smartphones to evaluate more metrics that are related to 

wheelchair users’ activities, such as maneuvering time, number of bouts [23], etc.  
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In summary, the approach proposed in this study and the experimental results may 

generate immediate benefits to researchers, who use Android smartphone sensors in 

research.  
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