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Abstract 
 
The discovery of loop invariants is a great 

challenge for the independent verification of 
automatically synthesized programs. This verification 
is needed to achieve high confidence in the correctness 
of the synthesized code, i.e., assurance that no latent 
defects in the synthesizer itself could have led to the 
synthesis of an incorrect program. To address this 
problem, we present an automated loop invariant 
discovery approach for programs synthesized using a 
combination of AI planning and component-based 
software development techniques. Specifically, a plan 
(denoting the synthesized code) is generated by an 
enhanced Graphplan planner first. The loop invariants 
can be automatically discovered based on the same 
planning graph used to synthesize the code. The 
correctness can be independently verified via standard 
loop invariant proof steps, including initialization, 
maintenance, and termination. The proposed approach 
not only has a rigorous theoretical basis, but is also 
guaranteed to produce accurate invariants by 
removing spurious invariants that are independent of 
the concerned loop. In combination with other loop 
invariant detection techniques, the proposed approach 
can produce loop invariants for complex programs 
and, thus, greatly facilitate high-confidence automated 
verification of synthesized systems. 

 
1. Introduction 

 
Loop invariants play an essential role in initial 

software development as well as subsequent software 
evolution and maintenance. Being fully aware of loop 
invariants, programmers are less likely to violate the 
properties that ensure the correct behaviors of the 
software under construction. This can improve the 
quality of manually composed programs. On the other 
hand, such invariants are equally critical for verifying 
programs that are automatically generated by some 
program synthesis tools. For example, NASA did not 

attempt to prove the correctness of the program 
generator for Kalman Filters because of the 
complexity, but came up with a technique to verify the 
generated code instead [8]. Loop invariants are used to 
verify the correctness of the generated Kalman Filters. 
Although there are program synthesis methods that are 
designed to be “correct-by-construction”, such as 
AMPHION [21], the program generator itself could 
have implementation bugs in it. Therefore, using a 
different technique to independently cross-verify the 
generated programs is needed to enhance the 
confidence in the reliability of the program. 

AI planning is attractive for automated software 
engineering because of its emphasis on goals and the 
similarity of plans to programs. There are research 
works [17][22] demonstrating that the formalization of 
component-based software development (CBSD) 
shows great similarities to the problem of AI planning. 
It is very promising to combine these two techniques to 
achieve automated program synthesis. This requires AI 
planners to be powerful in generating glue code. 
However, the majority of existing AI planners can only 
generate sequential plans, in which no conditional and 
loop constructs are possible. For the few AI planners 
that are capable of generating conditional and loop 
constructs, they are either not efficient or not 
sufficiently scalable. Hence, we design and implement 
a fast iterative planner, FIP [7], which extends classical 
Graphplan [2] and can achieve high scalability and 
efficient planning. It can generate procedure-like 
generic reusable plans, called procedural plans. The 
techniques used in FIP can be applied to other 
Graphplan variants as well. In this sense, the big 
Graphplan family can be enhanced with the capability 
of iterative planning. 

Figure 1 illustrates the architecture of the hybrid 
program synthesis system, in which the AI planning 
subsystem is at the core. The generated plan can be 
seen as the synthesized code that chooses and organizes 
the underlying components to achieve a certain goal. In 
this paper, we present a novel approach for discovering 

2008 11th IEEE High Assurance Systems Engineering Symposium

1530-2059/08 $25.00 © 2008 IEEE
DOI 10.1109/HASE.2008.36

333



 
 

loop invariants to facilitate the verification of the 
synthesized program. 
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Figure 1: Architecture of Planning-Based Code 

Synthesis System 
 
This approach is based on the analysis of the 

planning graph, in which a plan is generated. It exploits 
Graphplan’s intrinsic features, e.g., level-off, layered 
plan, etc., to discover loop invariants. Specifically, 
right before the loop starts, a set of propositions is 
identified as the possible invariant. This set is further 
refined by checking its validity before each iteration 
and at termination. This typically fulfills all the 
standard invariant proof steps, including initialization, 
maintenance, and termination. Hence, the proposed 
approach is theoretically sound. 

The proposed method discovers invariants for the 
code that glues the underlying components together. It 
assumes that the underlying components are correct. 
Other dynamic invariant detection techniques, e.g., 
Daikon [4], can be used to verify the correctness of the 
underlying components. Therefore, this typically forms 
an invariant discovery hierarchy with the proposed 
approach leveraging the capabilities of other invariant 
detection techniques. This can greatly improve the 
overall system’s reliability. 

In addition, AI planning is extensively used in 
service-oriented composition and workflow generation 
[18]. The proposed approach can be seamlessly applied 
to this area also. Invariants can be automatically 
discovered and used to ensure the correctness of the 
composite service or synthesized workflow. 

The rest of this paper is organized as follows: In 
Section 2, some background knowledge is introduced 
and the Graphplan properties that facilitate loop 
generation and loop invariant discovery are presented. 
In Section 3, the algorithm that supports the synthesis 
of conditional and loop constructs is presented. Two 
propositions are given for identifying the loop 
boundary. In Section 4, we present the AI planning-
based loop invariant discovery approach. In Section 5, 

the related works are reviewed and in Section 6, we 
conclude the paper and identify some future research 
directions. 
 
2. Background 
 

This section briefly introduces the background 
knowledge regarding how AI planning and CBSD can 
be integrated together so that the requisite glue code 
can be synthesized and how loop invariants are 
identified as a by-product of the program synthesis 
process. 

A software component can be modeled as a 
planning operator because it is an independent unit that 
provides a predefined service. Its behavior can be 
captured by constraints that must be satisfied before 
using the component (preconditions) and the conditions 
that will be established by the execution of the 
component (post-conditions). As shown in Figure 1, a 
component repository is available to the system so that 
the planning domain generator can navigate through it 
and generate planning parameters for the AI planner. 
Thus, the AI planner can work over the planning 
operators that are converted from components and 
select and organize the components based on the 
planning parameters and eventually form a plan that 
can be used to derive the glue code. Then, the plan 
parser parses the generated plan and passes the 
uniformly formatted one to adapters that work as 
bridges between the AI planning system and specific 
CBSD systems. Finally, the CBSD code generator will 
help generate the final codes. 

Loop invariants can be generated along with the 
planning process. We have implemented an enhanced 
Graphplan planner, FIP, that can generate program-like 
plans, called procedural plans. Since the enhanced 
planner involves Graphplan, we first briefly introduce 
the basic concepts of Graphplan. 
 
2.1. Graphplan 
 

Graphplan alternates between graph expansion and 
solution extraction phases. During the graph expansion 
phase, the planning graph is extended in the forward 
direction until it has achieved a necessary (but perhaps 
insufficient) condition for plan existence. The solution 
extraction phase then performs a backward-chaining 
search on the graph to identify a valid plan. The 
generated planning graph is arranged in levels 
alternating between proposition and action levels. “No-
op” actions propagate the propositions from the current 
proposition level to the next proposition level. 
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Mutually exclusive (mutex) relations among 
actions/propositions should be identified and 
propagated. No two actions at the same level in a valid 
plan can be mutex. If no appropriate plans are found, 
then the termination condition for Graphplan states that 
when two adjacent proposition levels of the forward 
planning-graph are identical, i.e., they contain the same 
set of propositions and have the same exclusivity 
relations, then the planning-graph has leveled off and 
the algorithm terminates with failure. Graphplan is both 
sound and complete [2]. 

 
2.2. Notational Conventions 

 
To better illustrate the idea of the planning method, 

we use STRIPS planning scheme to formulate planning 
problems. But our method is not limited to STRIPS 
domains. It can be applied to PDDL [16] planning 
domains as well. 

We follow the convention in [11] that all operator 
schemata are supposed to be grounded, i.e., actions. A 
STRIPS action � is defined in a triple, � = �pre(�), 
add(�), del(�)�, where pre(�) are the preconditions of 
�; add(�) are the add effects of �; and del(�) are the 
delete effects of �. 

In addition, we define Ai as the i-th action level and 
Pi as the i-th proposition level. The set of mutex pairs 
in Ai is defined as �Ai = {(�, �) | �, � � Ai and � and � 
are mutex}. Similarly, �Pi = {(p, q) | p, q � Pi and p 
and q are mutex}. Then, a planning graph G that is 
expanded up to level i is defined as follows [15]: 

G = �P0, A1, �A1, P1, �P1, .., Ai, �Ai, Pi, �Pi� 
 

2.3. Planning Graph Properties for Loop 
Generation and Invariants Detection 
 
Planning graph structures exhibit many favorable 

properties that provide adequate information for 
reachability analysis, loop generation, and invariants 
detection. 

 
2.3.1.  Level-Off. In classical Graphplan, “level-off” 
is a feature that guarantees the termination of the 
planning process when no plans exist. As shown in 
Figure 2, level-off takes place when the proposition 
level Pi is identical to Pi+1. If we continue to expand the 
planning graph, then the next action level Ai+2 will be 
identical to Ai+1. Action level Ai+2 will generate another 
proposition level which is identical to Pi+1 and the same 
pattern repeats forever. Hence, “level-off” represents 
an endless loop in which all applicable actions have 
been used, but cannot generate a desirable effect 
exiting the loop. This feature can be exploited to 

facilitate the generation of loop constructs, which is 
discussed in Section 3. 

 
 

Identical 

P0  Pi     Ai+1 Pi+1  

 
Figure 2: Level-off 

 
2.3.2. No-op. No-op actions are designed to 
propagate propositions from the current proposition 
level to the next proposition level. One no-op action 
just propagates one proposition at each time. No-ops 
provide the planning graph with the property that if 
proposition p � Pi, then p � Pj for all j � i. As shown in 
Figure 2, the thick grey lines represent no-ops. 

This property gives us a hint that loop invariants can 
be discovered with the help of no-ops. Specifically, if 
we know that a loop L starts in proposition level Pi and 
ends in proposition level Pj (j > i), we can obtain a set 
of propositions 	� Pi, such that the propositions in 	 
are not mutex with the preconditions of loop L. As no-
ops will propagate 	 to Pj, we can check whether 	 is 
not mutex with the outcomes of loop L in Pj as well. If 
it is the case, then the loop invariant properties of 
initialization and termination have been fulfilled. What 
is left is to verify the property of maintenance. Section 
3 discusses in detail how to identify a loop’s starting 
and ending points and Section 4 discusses how to 
verify the properties of initialization, maintenance, and 
termination. 

 
2.4. Nondeterministic Actions 

 
To motivate nondeterminism in planning, and to 

explain the concepts in subsequent sections, we use the 
joystick control problem [5] as our running example. 
This is a tele-control robot simulation system where the 
system operator manipulates a joystick to remotely 
control a robotic system. Assume that there is a button 
on the joystick that can be used by the operator to send 
the termination command to halt the robot. The 
planning problem is to read all the normal control 
commands sent by the operator through the joystick 
until the termination command is issued, and then the 
joystick is closed. The action “ReadJoystick” is 
nondeterministic because the received command may 
be a control command or a termination command. The 
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time at which the operator will send out the termination 
command is nondeterministic. Now, let us formally 
define a nondeterministic planning domain. 
 
Definition 2.1 A nondeterministic planning domain is a 
4-tuple 
 = (P, S, A, �), where: 
� P is a finite set of propositions; 
� S  2P is a finite set of states in the system; 
� A is a finite set of actions that are fully instantiated 

operators; 
� � : S � A � 2S is the state-transition function. 

According to this definition, a nondeterministic 
action can have multiple effects, each of which is a 
state in S. One of the effects is called the intended 
effect and represents the desired effect to be generated, 
while others are called failed effects [12], representing 
action failures or undesired external events. For 
example, if the goal is to close the joystick, then the 
intended effect for “ReadJoystick” is “the termination 
command is issued” and the failed effect is “read a 
normal control command”. 

In order to formulate the nondeterministic action 
that has multiple effects with STRIPS, we apply a 
method similar to [9], i.e., a nondeterministic action 
with multiple effects is decomposed into multiple 
actions. Formally, suppose act is an action having 
multiple possible effects E = {e1, e2, …, en}. Then, �e: 
e � E, create an action � such that, 

� pre(�) = pre(act) and, 
� add(�) = e. 
In order to differentiate these decomposed actions 

from the original actions that have a single effect, we 
define the set of decomposed actions as D-actions and 
other actions as G-actions. The difference is that D-
actions are decomposed from some actions with 
multiple effects, while G-actions are the originally 
existing standard classical actions. 

 
Definition 2.2 Given an action act with multiple 
effects, the decomposition function � is defined as 
�(act) = {� | � is the action obtained from the 
decomposition of action act}. 
 
Definition 2.3 Let act be an action with multiple 
effects. If there is a D-action � � �(act) that creates the 
intended effect at a certain time step, then � is called an 
S-action. All D-actions that generate failed effects are 
called F-actions. 

It should be noted that S-actions and F-actions are 
NOT static. At different time steps, previous S-actions 
could become F-actions and vice versa. In summary, 
for a planning problem, three kinds of planning actions 
are possible: 

� G-action: This is the set of standard 
Graphplan actions. 

� F-action: This includes D-actions that 
generate failed effects at a certain time step. 

� S-action: This includes special D-actions that 
generate the intended effects at a certain time 
step. 

 
3. Loop Identification 
 

In a nondeterministic domain, each failed effect 
needs some “remedial actions” to fix the effect. In [7], 
a novel algorithm that extends classical Graphplan is 
proposed to support both conditional as well as loop 
constructs. An enhanced Graphplan planner, FIP, has 
been developed to implement the algorithm. 

FIP is a two-phase planning algorithm with two 
novel concepts. First, it makes use of the level-off 
property for loop construction. It relies on level-off to 
distinguish strong cyclic solutions from strong 
solutions. As defined in [3], strong solutions are 
guaranteed to achieve the specified goal, while strong 
cyclic solutions have a chance to terminate and they are 
guaranteed to achieve the goal state if they terminate. 

Before exploiting level-off as discussed above, we 
need to identify the S-actions and the possibility of 
obtaining a plan. Thus, another novel concept of FIP is 
the generation of a weak plan [3] by running the 
classical Graphplan in the first phase. The plan is weak 
because it only indicates a possible path to achieve the 
goal. All the D-actions in the weak plan are identified 
as S-actions since they generate the intended effects. 
More importantly, the weak plan represents the 
optimistic shortest backbone path to the goal because 
Graphplan always returns the shortest path [1]. Since 
the search in the second phase is along the shortest 
path, a substantial performance gain is achieved. 
 
3.1. Phase 1: Weak Plan Generation 
 

In the first phase, the classical Graphplan is run to 
generate a weak plan, in which all D-actions are S-
actions. 
Theorem 3.1. At each time step, the F-actions are 
bypassed by the S-actions and, therefore, cannot be 
included in the weak plan. 
Proof outline: The theorem is based on the fact that the 
Graphplan algorithm always returns a plan with the 
shortest path [1]. F-actions that produce failed effects 
need some remedial actions to correct the effects and, 
therefore, cannot produce the shortest path.  

Consider the tele-control joystick example. The 
simplified actions are listed in Table 1. The 
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“ReadJoystick” is a nondeterministic action and is 
decomposed into two D-actions. To read commands 
from the joystick, the handle of the joystick device 
must be acquired. Action “send” is supposed to send 
the command to the robot through TCP/IP links. Action 
“CloseJoystick” is responsible for releasing the handle 
of the joystick when the termination command is 
issued. 

 
Action D_ReadJoystick_CTL(LPDIRECTINPUTDEVICE  

?joystick, DIJOYSTATE ?js) 
Precondition Acquired(?joystick) & Empty(?js) 
Add effect Avail(?js) & CTLCMD(?js) 
Del effect Empty(?js) 
 

Action D_ReadJoystick_TM(LPDIRECTINPUTDEVICE   
?joystick, DIJOYSTATE ?js) 

Precondition Acquired(?joystick) & Empty(?js) 
Add effect Avail(?js) & TMCMD(?js) 
Del effect Empty(?js) & CTLCMD(?js) 
 

Action CloseJoystick(DIJOYSTATE ?js,  
LPDIRECTINPUTDEVICE ?joystick) 

Precondition TMCMD (?js) & Empty(?js) 
Add effect Closed(?joystick) 
Del effect Acquired(?joystick) 
 
Action Send(DIJOYSTATE ?js) 
Precondition Avail(?js) 
Add effect Empty(?js) & Sent(?js) 
Del effect Avail(?js) 

Table 1: Jostick Actions 
 

If the planning problem is that the handle of the 
joystick device is acquired and the goal is to close the 
joystick, then the weak plan is as shown in Figure 3, 
including only the S-action and G-actions. 
 

 D_ReadJoystick_TM; 
Send; 
CloseJoystick; 

 
Figure 3: A weak plan for the tele-control example 
 
This is a weak plan because it does not consider the 

effect of receiving a normal control command at all. 
We define the weak plan generated in the first phase as 
the backbone weak plan WPb because subsequent 
procedural plans are centered on it. We then trim the 
planning graph by including only actions in the 
backbone weak plan and the propositions related to 
these actions. This is to keep only related states and 
actions. We call the finalized planning graph as WGb. 

 
3.2. Phase 2: Complete Plan Generation 

 
As the backbone weak plan WPb does not consider 

failed effects at each time step, the idea of the second 
phase algorithm is to treat each of the failed effects as a 
separate planning problem and generate a plan for it. 

We call this process “sub-planning”. The novelty is 
that we manipulate the planning graph so that strong 
cyclic solutions for sub-plannings end up with level-off 
while strong solutions, as usual, achieve the goal 
directly. We can, thus, easily distinguish strong cyclic 
solutions from strong solutions. Figure 4 illustrates the 
outline of the algorithm. 

 
 /* Main Function for the first algorithm  
*  Given a planning problem, a backbone weak plan WPb is generated first. 
*  Assumption: Planning domain is dead-end free 
*/ 
Main(WPb) 
1. Treat each failed effect e with respect to a D-action in WPb as a planning problem 
2.            Construct a planning graph for this planning problem 
3.            If level-off Then 
4.                        Generate a strong cyclic sub-solution; 
5.            Else 
6.                        Generate a sub-solution WPb�; 
7.                        If there are D-actions involved in WPb� Then 
8.       Main(WPb�); 
9.          End If 
10.            End If 
11. Repeat step 1 until all the failed effects are handled 

Figure 4: Outline of the algorithm 
 
3.2.1. Sub-planning Graph Expansion. The initial 
proposition level of the sub-planning for the failed 
effect e is the proposition level that enables the sub-
planning in WGb. Let the proposition level in WGb be 
Pi that enables the sub-planning and let � be the D-
action that generates the failed effect e. Then the first 
action level includes only  �. 

The purpose of selecting the initial proposition and 
action levels in this way is two folds. The first goal is 
to include as much information in WPb as possible so 
that the sub-planning will not spend efforts to deal with 
previously handled states. The second objective is to 
introduce the failed effect to the sub-planning. 

After the initial proposition level is set, the graph 
expansion phase starts. But it is important to avoid 
using any other D-actions that originate from the same 
nondeterministic action as � to expand the planning 
graph during the sub-planning process. This is to 
prevent other related D-actions from adversely 
impacting the sub-planning process. 
 
3.2.2. Level-off Handling. If the sub-planning 
eventually turns out to be a strong solution, then we 
add the D-action � to a set Cs

1, which will help us to 
determine the termination point of a loop. It is also 
possible that the sub-planning graph levels off, in 
which case it suggests that a strong cyclic solution 
exists. 

 
                                                           
1 By default, the S-action is included in Cs. 
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Theorem 3.2 During a sub-planning for a failed effect 
ef, if the planning graph levels off, then a strong cyclic 
solution exists in a dead-end free domain. 
Proof Outline: Since the domain is dead-end free, there 
should be at least one path from any reachable state to 
the goal state. However, level-off does take place and 
the goal state is not reachable. This fact suggests that 
there is no direct path leading to the goal state from ef. 
To reach the goal state, it must go through a path 
generated by some related D-actions. In addition, the 
way of choosing the initial proposition level ensures 
that all previous states in causal order before the state 
enabling the sub-planning have been included for the 
sub-planning. There must be a sequence of actions 
transiting the state corresponding to ef to a certain state 
sr that appears no later than the state enabling the sub-
planning in WGb. sr must be included in the initial 
proposition level so that the planning graph can level 
off. This typically forms a loop. . 

To locate a state in the planning graph, we need to 
locate the propositions involved in the state. We use 
the level-membership (lms) function introduced in [11] 
to facilitate the state detection. Let p be a proposition 
that appears in proposition level i for the first time. 
Then, lms(p) = min{i | Pi contains proposition p}.  

Given a state s, function LevelId returns the 
identifier of the first proposition level which contains s. 

LevelId(s) = max(lms(p) | p � s) 
In FIP, lms is implemented using a hash table to 

help with efficient search. Initially, lms only contains 
the information of the propositions in WGb and then 
new propositions are appended to lms after a sub-plan 
is generated and its sub-planning graph is finalized. 
The computation of the appropriate state sr when level-
off takes place proceeds in the following steps as 
shown in Figure 5. 
 
 (1) Let Al be the last action level and 	be the set of propositions generated  

by actions (do not include no-ops) in Al in the sub-planning graph. 

(2) Compute �lid, p � = �max(lms(p) | p �	), p�. 

(3) Identify state sr such that  p � sr and LevelId(sr) � lid. 

(4) Treat sr as the goal and do back-chaining search to get a plan. 
 

Figure 5 Computation steps for the repeated state 
 
The idea is to find a proposition p that is generated 

by some action and is closest to the goal (i.e., steps (1) 
and (2)). Requiring p to be closest to the goal is to 
improve the quality of the plan. Then, the state sr 
containing p is located as indicated by the location of p. 
sr becomes the new goal for the sub-planning. 

After a plan is generated, the sub-planning graph is 
finalized to include only actions in the plan and their 

related propositions. Then, append the propositions 
that are not included in WGb to lms and the proposition 
levels that are after the level where the sub-planning is 
enabled in WGb. This operation ensures that the newly 
handled states in the sub-planning are accessible for 
later sub-planning problems. 

The plan generated in the sub-planning might still 
be a weak plan, i.e., there might be D-actions involved 
in it as shown in line 7 in Figure 4. In this case, the 
previous process is applied recursively to the newly 
generated weak plan until all the failed effects are 
handled. 

We use the tele-control joystick example to 
illustrate how the second phase works. Two separate 
planning graphs are shown in Figure 6. The graph in 
the left portion is the backbone weak planning graph. 
The sub-planning for the effect of receiving normal 
command is shown in the right portion. The initial 
proposition level is obtained based on P0 in WGb and 
the first action level contains only the D-action, 
D_ReadJoystick_CTL, as discussed in Section 3.2.1. 

The sub-planning graph levels off, which means a 
strong cyclic solution exists according to Theorem 3.2. 
Following the steps in Figure 5, the previously handled 
state included in the last proposition level in the sub-
planning graph is identified as “Empty � Acquired”, 
which is the initial state of the backbone weak plan. 
Therefore, the goal is set to “Empty � Acquired” and 
results in a sub-plan “Send”. 
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Figure 6: Planning Graph Expansion in the Second 
Phase 

 
After the planning graph expansion has been 

completed and the remedial actions for each failed 
effect have been determined, we can generate loop(s) 
from the planning graph with the help of the following 
two Propositions. 
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Proposition 3.1. A loop starts at the second 
proposition level of the sub-planning graph which 
levels off. 
Proof outline: Because the sub-planning turns out to be 
a strong cyclic solution, the application of the F-action 
is the reason why a loop is formed. Hence, the loop 
starts from the second proposition level which is 
generated after the application of the F-action.  
 
Proposition 3.2. Actions in Cs that have a path leading 
to the given goal represent the exit point of the loop. 
Proof outline: Level-off represents an endless loop, 
which means that there is no direct path from the failed 
effect to the goal state. Level-off takes place because 
the related effects are not allowed to be included in the 
current graph. This fact implies that the path resulting 
from the failed effect must go through the paths 
resulting from the related effects to reach the goal state 
in a dead-end free domain. The actions in Cs can 
generate such effects and result in paths to the goal.  

After the loop boundary is identified, we use the 
remedial actions for each failed effect to generate an 
“if” branch. Then, the application of the S-action and 
other D-actions in Cs after level-off represents the 
nondeterministic action eventually generating the 
effects leading to the goal. For example, the sub-plan in 
Figure 6 is interpreted as “if (CTLCMD) {Send;}”. 
Figure 7 illustrates the final loop construct. 
 

 

ReadJoystick; 
while(�TMCMD){ 
    if(CTLCMD)  
        {Send; }  
      ReadJoystick; 
} 

 negation 
 of 
 intended 
 effect 

 
Figure 7: Loop construct for the tele-control 

example 
 

4. Automated Loop Invariants Detection 
 
A loop invariant is an assertion that is satisfied at 

the start and at the end of each iteration of a loop and 
contains important assertions for proving the 
correctness of the loop upon termination. The proof of 
the loop invariant includes the following three steps: 

� Initialization: The loop invariant must be true 
before the start of the loop; 

� Maintenance: If the loop invariant is true 
before an iteration of the loop, it must be true 
before the next iteration; 

� Termination: The loop invariant must still 
hold when the loop terminates. 

We present a systematic loop invariant discovery 
approach by following the above three steps. We define 
the following notations for specifying the problem: 

Let loop L be identified in a sub-planning headed 
for the failed effect ef. Let F-action �� generate the 
failed effect ef. Let Pi be the proposition level enabling 
this sub-planning problem in the backbone weak 
planning graph and let “�0; �1; …; �k” be the sequence 
of actions before Pi in the backbone weak plan. Then, 
for initialization, we can obtain a set of propositions 
that might be the loop invariant for L as follows. 

LIL = � (s� , ��)    (1) 
where s� = � (… � (� (s0, �1), �2) … �k) is the state 
enabling ��; s0 is the initial state of the planning 
problem; and �  is the state transition function defined 
in Definition 2.1. 
 
Theorem 4.1. The method given in (1) for choosing 
LIL is correct for initialization. 
Proof outline: According to Proposition 3.1, the loop 
starts from the second proposition level Ps1 of the sub-
planning graph. (1) defines the state where the F-action 
�� is applied. This state is contained in Ps1 according to 
Section 3.2.1 and every proposition in the state is true 
at the moment. Hence, they are possible loop invariants 
right before the loop starts.  

Next, we can determine the ending point of loop L 
according to Proposition 3.2. Let a � Cs, where actions 
in Cs can result in paths leading to the goal. Let Pj be 
the proposition level immediately after the action level 
where a is located in the planning graph. The set of 
propositions LIL obtained in the previous step can be 
refined as follows: 

LIL = LIL � {p | (p, q) � �Pj for p � LIL and q 
�add(a)}   (2) 

 
Theorem 4.2. The refinement of LIL given in (2) is 
correct for termination. 
Proof outline: In order to make LIL true upon 
termination of the loop, no proposition in LIL can be 
mutex with the add effects of a, where a � Cs and 
action a can result in a path leading to the goal.  

At this point, LIL is true before the loop starts and is 
also true when the loop terminates. We should also 
make LIL hold before each iteration of the loop starts 
and also ensure that it holds before the next iteration 
starts, i.e., maintenance. For the failed effect ef, let af1; 
af2; …; afk be the sequence of remedial actions with af1 
being the F-action generating ef, and s� be the state 
enabling af1. Then LIL is refined as follows: 

LIL = LIL � {p | (p, q) is mutex and p � LIL and q 
�W = � (… � (� (s�, af1), af2) … afk)} (3) 

where � is the state transition function defined in 
Definition 2.1. 
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Theorem 4.3. The refinement of LIL given in (3) is 
correct for maintenance. 
Proof outline: The definition of W in (3) is the final 
state resulting by the sequence of actions af1; af2; …; 
afk. In order to make LIL true before the next iteration, 
no propositions in LIL could be mutex with a 
proposition in W. Since LIL is true before the first 
iteration according to Theorem 4.1, by induction we 
can prove that it will be true before every iteration by 
following the updating rule of (3).  

For the tele-control example, as shown in Figure 6, 
we can obtain the initial value of LIL according to (1), 
i.e., LIL = � (s0, CL) = {V, C, A}. According to (2), LIL 
= {V, C, A} � {C} = {V, A} because “C” represents 
“CTLCMD” which is mutex with the intended effect of 
“TMCMD”. Finally, according to (3), LIL = {V, A} � 
{V} = {A}. This is because � (� ({E, A}, CL), SD) = 
{S, C, E, A} and “V” represents “Avail” that is mutex 
with “E” that denotes “Empty”. Hence, the final loop 
invariant is {A}. Obviously, this is an accurate and 
meaningful result because the joystick will not work if 
the handle of the device is lost. 

 
4.1. Refining Invariants 

 
The approach presented above may include 

propositions that are independent of the concerned loop 
as part of the loop invariant. For example, some 
propositions that appear in the levels before the loop 
starts may be generated by some actions. They may be 
irrelevant to the loop under analysis. Therefore, they 
may hold for (1), (2), and (3) and the proposed method 
would recognize them as part of the loop invariants. 

To avoid this situation, we use the following 
heuristic method to refine the loop invariant. 

Let Obja = {the set of objects involved in 
instantiating the F-actions and their corresponding S-
action} and let Objp = {the set of objects involved in 
instantiating the proposition p}. If Obja � Objp = �, 
then report proposition p to be a possibly spurious 
invariant. 

 
4.2. Combining with other Techniques 

 
The completeness of the discovered loop invariants 

depends highly on how the planning domain is created 
and how the planning problems are given. The 
proposed approach cannot discover loop invariants if 
the possible invariants are not modeled as propositions. 
For example, a carefully conceived planning domain 
can be created to solve the GCD (Greatest Common 
Divisor) problem [6]. The generated plan is as follows: 
 

 Compare(x, y); 
while (not Equal(x,y)){ 
    if (Greater(y, x)){  Deduct (y, x);} 
    else if (Greater(x, y)){  Deduct (x, y);} 
    Compare(x, y );}  

Here, “Deduct(x, y)” means “x – y”. As “Compare(x, 
y)” can be issued anytime as long as two positive 
integers are available, the planning problem does not 
provide much extra information for discovering the 
loop invariants. Daikon [4] is a well-known tool that is 
capable of detecting loop invariants involving range 
limits. It can detect the loop invariant of the GCD 
problem by reporting the range limits, i.e., x > 0 and y 
> 0. Of course, if the planning problem can present 
Greater(x, 0) & Greater(y, 0) in the initial condition, 
the proposed approach can discover the loop invariant 
correctly. But this example shows that by combining 
the above approach with other loop invariant detection 
techniques, it can produce even more accurate and 
meaningful loop invariants. 
 
5. Related Works 

 
In 1990s, deductive program synthesis methods 

thrived and were once regarded as the key to achieving 
automated program synthesis [14]. KIDS [19] and 
AMPHION [21] are two successful representatives of 
this approach. The advantage of deductive synthesis is 
that the generated programs are correct-by-
construction. However, these general-purpose systems 
are either not very efficient or not very powerful in 
generating complex programs. Specware [20] extends 
KIDS and employs stepwise refinement to transform 
formal specifications into executable codes. Planware 
[1] is an extension of Specware with focus on 
generating high-performance schedulers from 
specifications of scheduling problems. Planware 
supports automatic construction of a domain theory for 
a particular scheduling problem. Its performance is 
much better than that of KIDS. But the cost is that it 
only supports sharply restricted domains [1]. 

Based on AMPHION, NASA developed domain 
specific generators that separate verifications from 
program generation. For example, loop invariants are 
used to verify the correctness of the generated Kalman 
Filters in [8]. 

Loop invariants play an important role in specifying 
the behaviors of programs that include loops. Loop 
invariants are helpful in both the initial system 
development activities as well as subsequent system 
maintenance tasks. Being aware of loop invariants, 
developers are unlikely to violate the properties that 
must be preserved in a program. 
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Daikon [4] is a well known tool for dynamically 
detecting program invariants. It infers possible 
invariants in a program by really running the program. 
First, the interested variables are identified and 
instrumented. Then, a set of test cases is collected, over 
which the program runs. Finally, invariants that behave 
consistently during the tests are reported to the 
programmer. 

Daikon suffers from the problem of reporting too 
many invariants, some of which may be spurious. The 
work in [10] proposed a new structural coverage 
criterion to improve the accuracy of the dynamically 
detected invariants. Daikon is executed first to obtain a 
set of likely invariants. Then, the invariant-coverage 
suites for these likely invariants are generated. After 
Daikon runs over the suites, some of the false 
invariants are removed. 

All dynamic approaches suffer from the inherent 
problem that the quality of the detected invariants relies 
substantially on the quality and completeness of test 
cases [4]. They are not theoretically sound. On the 
other hand, theorem proving is extensively used to 
facilitate the loop invariant detection. In [13], the loop-
invariant computations are initiated only when there is 
a need for stronger loop invariant. Hence, this is an 
iterative process by first generating the verification 
condition which is sent to a theorem prover to prove its 
validity. If it fails, the set of candidate traces 
responsible for the failure are passed to an abstract 
interpreter on the loops so that it might find stronger 
loop invariants that allow the theorem prover to make 
more progress toward a proof. Although this is a sound 
technique, its scalability and the degree of easy-to-use 
still remain unclear. 

Loop invariants are also important for program 
synthesis because of the possibility that some latent 
defects in the program synthesis tool may result in the 
generation of incorrect code. Hence, they use 
verification technique to guarantee the correctness [8]. 
As loop invariants are indispensable in automated 
program verification, the ability to automatically detect 
loop invariants is very critical. Our approach is sound 
and can ensure the validity of the detected loop 
invariants, and, therefore, greatly facilitates high-
confidence system verification techniques. 

 
6. Conclusions and Future Work 

 
In this paper, we have presented an automated loop 

invariant discovery approach via planning graph 
analysis. Loop invariants can be discovered as a by-
product of the planning process. Specifically, after a 
plan is generated, the final planning graph can be used 

for loop invariants discovery. Two propositions are 
presented to help identify the loop boundaries. Then, 
loop invariants are computed in three steps, i.e., 
initialization, maintenance, and termination, which are 
standard proof steps for validating loop invariants. The 
proposed approach has rigorous theoretical basis and is 
sound for loop invariant discovery. Although the focus 
of the paper is on loop invariants, the proposed 
approach can help discover all kinds of program 
invariants by following the same approach. 

As the proposed approach exploits only Graphplan’s 
intrinsic features, it can be seamlessly applied to 
Graphplan’s large number of variants, such as the well-
known FF [11]. As shown in Figure 1, a hierarchical 
invariants discovery structure can be formed with the 
proposed approach addressing the invariant discovery 
for the glue code and leveraging the capabilities of 
other invariant detection techniques, e.g., Daikon [4], 
as needed to identify appropriate loop invariants for the 
underlying components. This can greatly facilitate 
high-confidence system verification process and also 
improve the system’s reliability. In addition, AI 
planning is extensively used in service-oriented 
composition and dynamic workflow generation. The 
proposed approach can be applied to this area also. 

Some future research directions include further 
analysis of the informative structure of planning graphs 
and use of the loop invariants to verify the 
corresponding programs. Planning graphs can also 
provide more information for discovering other types 
of invariants, such as class and service invariants, for 
comprehensive system verification. 
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