

Automated Discovery of Loop Invariants for High-Assurance Programs
Synthesized Using AI Planning Techniques

Jicheng Fu, Farokh B. Bastani, I-Ling Yen

Department of Computer Science
University of Texas at Dallas

{jxf024000@utdallas.edu, bastani@utdallas.edu, ilyen@utdallas.edu}

Abstract

The discovery of loop invariants is a great

challenge for the independent verification of
automatically synthesized programs. This verification
is needed to achieve high confidence in the correctness
of the synthesized code, i.e., assurance that no latent
defects in the synthesizer itself could have led to the
synthesis of an incorrect program. To address this
problem, we present an automated loop invariant
discovery approach for programs synthesized using a
combination of AI planning and component-based
software development techniques. Specifically, a plan
(denoting the synthesized code) is generated by an
enhanced Graphplan planner first. The loop invariants
can be automatically discovered based on the same
planning graph used to synthesize the code. The
correctness can be independently verified via standard
loop invariant proof steps, including initialization,
maintenance, and termination. The proposed approach
not only has a rigorous theoretical basis, but is also
guaranteed to produce accurate invariants by
removing spurious invariants that are independent of
the concerned loop. In combination with other loop
invariant detection techniques, the proposed approach
can produce loop invariants for complex programs
and, thus, greatly facilitate high-confidence automated
verification of synthesized systems.

1. Introduction

Loop invariants play an essential role in initial

software development as well as subsequent software
evolution and maintenance. Being fully aware of loop
invariants, programmers are less likely to violate the
properties that ensure the correct behaviors of the
software under construction. This can improve the
quality of manually composed programs. On the other
hand, such invariants are equally critical for verifying
programs that are automatically generated by some
program synthesis tools. For example, NASA did not

attempt to prove the correctness of the program
generator for Kalman Filters because of the
complexity, but came up with a technique to verify the
generated code instead [8]. Loop invariants are used to
verify the correctness of the generated Kalman Filters.
Although there are program synthesis methods that are
designed to be “correct-by-construction”, such as
AMPHION [21], the program generator itself could
have implementation bugs in it. Therefore, using a
different technique to independently cross-verify the
generated programs is needed to enhance the
confidence in the reliability of the program.

AI planning is attractive for automated software
engineering because of its emphasis on goals and the
similarity of plans to programs. There are research
works [17][22] demonstrating that the formalization of
component-based software development (CBSD)
shows great similarities to the problem of AI planning.
It is very promising to combine these two techniques to
achieve automated program synthesis. This requires AI
planners to be powerful in generating glue code.
However, the majority of existing AI planners can only
generate sequential plans, in which no conditional and
loop constructs are possible. For the few AI planners
that are capable of generating conditional and loop
constructs, they are either not efficient or not
sufficiently scalable. Hence, we design and implement
a fast iterative planner, FIP [7], which extends classical
Graphplan [2] and can achieve high scalability and
efficient planning. It can generate procedure-like
generic reusable plans, called procedural plans. The
techniques used in FIP can be applied to other
Graphplan variants as well. In this sense, the big
Graphplan family can be enhanced with the capability
of iterative planning.

Figure 1 illustrates the architecture of the hybrid
program synthesis system, in which the AI planning
subsystem is at the core. The generated plan can be
seen as the synthesized code that chooses and organizes
the underlying components to achieve a certain goal. In
this paper, we present a novel approach for discovering

2008 11th IEEE High Assurance Systems Engineering Symposium

1530-2059/08 $25.00 © 2008 IEEE
DOI 10.1109/HASE.2008.36

333

loop invariants to facilitate the verification of the
synthesized program.

 Component
 Repository

CBSD
Code

Generator

Planning
parameters

Plans

Planning
Domain

Generator

AI
Planner

Plan Parser

Adapter Adapter Adapter

CBSD
Code

Generator

CBSD
Code

Generator

Figure 1: Architecture of Planning-Based Code

Synthesis System

This approach is based on the analysis of the

planning graph, in which a plan is generated. It exploits
Graphplan’s intrinsic features, e.g., level-off, layered
plan, etc., to discover loop invariants. Specifically,
right before the loop starts, a set of propositions is
identified as the possible invariant. This set is further
refined by checking its validity before each iteration
and at termination. This typically fulfills all the
standard invariant proof steps, including initialization,
maintenance, and termination. Hence, the proposed
approach is theoretically sound.

The proposed method discovers invariants for the
code that glues the underlying components together. It
assumes that the underlying components are correct.
Other dynamic invariant detection techniques, e.g.,
Daikon [4], can be used to verify the correctness of the
underlying components. Therefore, this typically forms
an invariant discovery hierarchy with the proposed
approach leveraging the capabilities of other invariant
detection techniques. This can greatly improve the
overall system’s reliability.

In addition, AI planning is extensively used in
service-oriented composition and workflow generation
[18]. The proposed approach can be seamlessly applied
to this area also. Invariants can be automatically
discovered and used to ensure the correctness of the
composite service or synthesized workflow.

The rest of this paper is organized as follows: In
Section 2, some background knowledge is introduced
and the Graphplan properties that facilitate loop
generation and loop invariant discovery are presented.
In Section 3, the algorithm that supports the synthesis
of conditional and loop constructs is presented. Two
propositions are given for identifying the loop
boundary. In Section 4, we present the AI planning-
based loop invariant discovery approach. In Section 5,

the related works are reviewed and in Section 6, we
conclude the paper and identify some future research
directions.

2. Background

This section briefly introduces the background
knowledge regarding how AI planning and CBSD can
be integrated together so that the requisite glue code
can be synthesized and how loop invariants are
identified as a by-product of the program synthesis
process.

A software component can be modeled as a
planning operator because it is an independent unit that
provides a predefined service. Its behavior can be
captured by constraints that must be satisfied before
using the component (preconditions) and the conditions
that will be established by the execution of the
component (post-conditions). As shown in Figure 1, a
component repository is available to the system so that
the planning domain generator can navigate through it
and generate planning parameters for the AI planner.
Thus, the AI planner can work over the planning
operators that are converted from components and
select and organize the components based on the
planning parameters and eventually form a plan that
can be used to derive the glue code. Then, the plan
parser parses the generated plan and passes the
uniformly formatted one to adapters that work as
bridges between the AI planning system and specific
CBSD systems. Finally, the CBSD code generator will
help generate the final codes.

Loop invariants can be generated along with the
planning process. We have implemented an enhanced
Graphplan planner, FIP, that can generate program-like
plans, called procedural plans. Since the enhanced
planner involves Graphplan, we first briefly introduce
the basic concepts of Graphplan.

2.1. Graphplan

Graphplan alternates between graph expansion and
solution extraction phases. During the graph expansion
phase, the planning graph is extended in the forward
direction until it has achieved a necessary (but perhaps
insufficient) condition for plan existence. The solution
extraction phase then performs a backward-chaining
search on the graph to identify a valid plan. The
generated planning graph is arranged in levels
alternating between proposition and action levels. “No-
op” actions propagate the propositions from the current
proposition level to the next proposition level.

334

Mutually exclusive (mutex) relations among
actions/propositions should be identified and
propagated. No two actions at the same level in a valid
plan can be mutex. If no appropriate plans are found,
then the termination condition for Graphplan states that
when two adjacent proposition levels of the forward
planning-graph are identical, i.e., they contain the same
set of propositions and have the same exclusivity
relations, then the planning-graph has leveled off and
the algorithm terminates with failure. Graphplan is both
sound and complete [2].

2.2. Notational Conventions

To better illustrate the idea of the planning method,

we use STRIPS planning scheme to formulate planning
problems. But our method is not limited to STRIPS
domains. It can be applied to PDDL [16] planning
domains as well.

We follow the convention in [11] that all operator
schemata are supposed to be grounded, i.e., actions. A
STRIPS action � is defined in a triple, � = �pre(�),
add(�), del(�)�, where pre(�) are the preconditions of
�; add(�) are the add effects of �; and del(�) are the
delete effects of �.

In addition, we define Ai as the i-th action level and
Pi as the i-th proposition level. The set of mutex pairs
in Ai is defined as �Ai = {(�, �) | �, � � Ai and � and �
are mutex}. Similarly, �Pi = {(p, q) | p, q � Pi and p
and q are mutex}. Then, a planning graph G that is
expanded up to level i is defined as follows [15]:

G = �P0, A1, �A1, P1, �P1, .., Ai, �Ai, Pi, �Pi�

2.3. Planning Graph Properties for Loop
Generation and Invariants Detection

Planning graph structures exhibit many favorable

properties that provide adequate information for
reachability analysis, loop generation, and invariants
detection.

2.3.1. Level-Off. In classical Graphplan, “level-off”
is a feature that guarantees the termination of the
planning process when no plans exist. As shown in
Figure 2, level-off takes place when the proposition
level Pi is identical to Pi+1. If we continue to expand the
planning graph, then the next action level Ai+2 will be
identical to Ai+1. Action level Ai+2 will generate another
proposition level which is identical to Pi+1 and the same
pattern repeats forever. Hence, “level-off” represents
an endless loop in which all applicable actions have
been used, but cannot generate a desirable effect
exiting the loop. This feature can be exploited to

facilitate the generation of loop constructs, which is
discussed in Section 3.

Identical

P0 Pi Ai+1 Pi+1

Figure 2: Level-off

2.3.2. No-op. No-op actions are designed to
propagate propositions from the current proposition
level to the next proposition level. One no-op action
just propagates one proposition at each time. No-ops
provide the planning graph with the property that if
proposition p � Pi, then p � Pj for all j � i. As shown in
Figure 2, the thick grey lines represent no-ops.

This property gives us a hint that loop invariants can
be discovered with the help of no-ops. Specifically, if
we know that a loop L starts in proposition level Pi and
ends in proposition level Pj (j > i), we can obtain a set
of propositions 	� Pi, such that the propositions in 	
are not mutex with the preconditions of loop L. As no-
ops will propagate 	 to Pj, we can check whether 	 is
not mutex with the outcomes of loop L in Pj as well. If
it is the case, then the loop invariant properties of
initialization and termination have been fulfilled. What
is left is to verify the property of maintenance. Section
3 discusses in detail how to identify a loop’s starting
and ending points and Section 4 discusses how to
verify the properties of initialization, maintenance, and
termination.

2.4. Nondeterministic Actions

To motivate nondeterminism in planning, and to

explain the concepts in subsequent sections, we use the
joystick control problem [5] as our running example.
This is a tele-control robot simulation system where the
system operator manipulates a joystick to remotely
control a robotic system. Assume that there is a button
on the joystick that can be used by the operator to send
the termination command to halt the robot. The
planning problem is to read all the normal control
commands sent by the operator through the joystick
until the termination command is issued, and then the
joystick is closed. The action “ReadJoystick” is
nondeterministic because the received command may
be a control command or a termination command. The

335

time at which the operator will send out the termination
command is nondeterministic. Now, let us formally
define a nondeterministic planning domain.

Definition 2.1 A nondeterministic planning domain is a
4-tuple
 = (P, S, A, �), where:
� P is a finite set of propositions;
� S 2P is a finite set of states in the system;
� A is a finite set of actions that are fully instantiated

operators;
� � : S � A � 2S is the state-transition function.

According to this definition, a nondeterministic
action can have multiple effects, each of which is a
state in S. One of the effects is called the intended
effect and represents the desired effect to be generated,
while others are called failed effects [12], representing
action failures or undesired external events. For
example, if the goal is to close the joystick, then the
intended effect for “ReadJoystick” is “the termination
command is issued” and the failed effect is “read a
normal control command”.

In order to formulate the nondeterministic action
that has multiple effects with STRIPS, we apply a
method similar to [9], i.e., a nondeterministic action
with multiple effects is decomposed into multiple
actions. Formally, suppose act is an action having
multiple possible effects E = {e1, e2, …, en}. Then, �e:
e � E, create an action � such that,

� pre(�) = pre(act) and,
� add(�) = e.
In order to differentiate these decomposed actions

from the original actions that have a single effect, we
define the set of decomposed actions as D-actions and
other actions as G-actions. The difference is that D-
actions are decomposed from some actions with
multiple effects, while G-actions are the originally
existing standard classical actions.

Definition 2.2 Given an action act with multiple
effects, the decomposition function � is defined as
�(act) = {� | � is the action obtained from the
decomposition of action act}.

Definition 2.3 Let act be an action with multiple
effects. If there is a D-action � � �(act) that creates the
intended effect at a certain time step, then � is called an
S-action. All D-actions that generate failed effects are
called F-actions.

It should be noted that S-actions and F-actions are
NOT static. At different time steps, previous S-actions
could become F-actions and vice versa. In summary,
for a planning problem, three kinds of planning actions
are possible:

� G-action: This is the set of standard
Graphplan actions.

� F-action: This includes D-actions that
generate failed effects at a certain time step.

� S-action: This includes special D-actions that
generate the intended effects at a certain time
step.

3. Loop Identification

In a nondeterministic domain, each failed effect
needs some “remedial actions” to fix the effect. In [7],
a novel algorithm that extends classical Graphplan is
proposed to support both conditional as well as loop
constructs. An enhanced Graphplan planner, FIP, has
been developed to implement the algorithm.

FIP is a two-phase planning algorithm with two
novel concepts. First, it makes use of the level-off
property for loop construction. It relies on level-off to
distinguish strong cyclic solutions from strong
solutions. As defined in [3], strong solutions are
guaranteed to achieve the specified goal, while strong
cyclic solutions have a chance to terminate and they are
guaranteed to achieve the goal state if they terminate.

Before exploiting level-off as discussed above, we
need to identify the S-actions and the possibility of
obtaining a plan. Thus, another novel concept of FIP is
the generation of a weak plan [3] by running the
classical Graphplan in the first phase. The plan is weak
because it only indicates a possible path to achieve the
goal. All the D-actions in the weak plan are identified
as S-actions since they generate the intended effects.
More importantly, the weak plan represents the
optimistic shortest backbone path to the goal because
Graphplan always returns the shortest path [1]. Since
the search in the second phase is along the shortest
path, a substantial performance gain is achieved.

3.1. Phase 1: Weak Plan Generation

In the first phase, the classical Graphplan is run to
generate a weak plan, in which all D-actions are S-
actions.
Theorem 3.1. At each time step, the F-actions are
bypassed by the S-actions and, therefore, cannot be
included in the weak plan.
Proof outline: The theorem is based on the fact that the
Graphplan algorithm always returns a plan with the
shortest path [1]. F-actions that produce failed effects
need some remedial actions to correct the effects and,
therefore, cannot produce the shortest path.

Consider the tele-control joystick example. The
simplified actions are listed in Table 1. The

336

“ReadJoystick” is a nondeterministic action and is
decomposed into two D-actions. To read commands
from the joystick, the handle of the joystick device
must be acquired. Action “send” is supposed to send
the command to the robot through TCP/IP links. Action
“CloseJoystick” is responsible for releasing the handle
of the joystick when the termination command is
issued.

Action D_ReadJoystick_CTL(LPDIRECTINPUTDEVICE

?joystick, DIJOYSTATE ?js)
Precondition Acquired(?joystick) & Empty(?js)
Add effect Avail(?js) & CTLCMD(?js)
Del effect Empty(?js)

Action D_ReadJoystick_TM(LPDIRECTINPUTDEVICE
?joystick, DIJOYSTATE ?js)

Precondition Acquired(?joystick) & Empty(?js)
Add effect Avail(?js) & TMCMD(?js)
Del effect Empty(?js) & CTLCMD(?js)

Action CloseJoystick(DIJOYSTATE ?js,
LPDIRECTINPUTDEVICE ?joystick)

Precondition TMCMD (?js) & Empty(?js)
Add effect Closed(?joystick)
Del effect Acquired(?joystick)

Action Send(DIJOYSTATE ?js)
Precondition Avail(?js)
Add effect Empty(?js) & Sent(?js)
Del effect Avail(?js)

Table 1: Jostick Actions

If the planning problem is that the handle of the
joystick device is acquired and the goal is to close the
joystick, then the weak plan is as shown in Figure 3,
including only the S-action and G-actions.

 D_ReadJoystick_TM;
Send;
CloseJoystick;

Figure 3: A weak plan for the tele-control example

This is a weak plan because it does not consider the

effect of receiving a normal control command at all.
We define the weak plan generated in the first phase as
the backbone weak plan WPb because subsequent
procedural plans are centered on it. We then trim the
planning graph by including only actions in the
backbone weak plan and the propositions related to
these actions. This is to keep only related states and
actions. We call the finalized planning graph as WGb.

3.2. Phase 2: Complete Plan Generation

As the backbone weak plan WPb does not consider

failed effects at each time step, the idea of the second
phase algorithm is to treat each of the failed effects as a
separate planning problem and generate a plan for it.

We call this process “sub-planning”. The novelty is
that we manipulate the planning graph so that strong
cyclic solutions for sub-plannings end up with level-off
while strong solutions, as usual, achieve the goal
directly. We can, thus, easily distinguish strong cyclic
solutions from strong solutions. Figure 4 illustrates the
outline of the algorithm.

 /* Main Function for the first algorithm
* Given a planning problem, a backbone weak plan WPb is generated first.
* Assumption: Planning domain is dead-end free
*/
Main(WPb)
1. Treat each failed effect e with respect to a D-action in WPb as a planning problem
2. Construct a planning graph for this planning problem
3. If level-off Then
4. Generate a strong cyclic sub-solution;
5. Else
6. Generate a sub-solution WPb�;
7. If there are D-actions involved in WPb� Then
8. Main(WPb�);
9. End If
10. End If
11. Repeat step 1 until all the failed effects are handled

Figure 4: Outline of the algorithm

3.2.1. Sub-planning Graph Expansion. The initial
proposition level of the sub-planning for the failed
effect e is the proposition level that enables the sub-
planning in WGb. Let the proposition level in WGb be
Pi that enables the sub-planning and let � be the D-
action that generates the failed effect e. Then the first
action level includes only �.

The purpose of selecting the initial proposition and
action levels in this way is two folds. The first goal is
to include as much information in WPb as possible so
that the sub-planning will not spend efforts to deal with
previously handled states. The second objective is to
introduce the failed effect to the sub-planning.

After the initial proposition level is set, the graph
expansion phase starts. But it is important to avoid
using any other D-actions that originate from the same
nondeterministic action as � to expand the planning
graph during the sub-planning process. This is to
prevent other related D-actions from adversely
impacting the sub-planning process.

3.2.2. Level-off Handling. If the sub-planning
eventually turns out to be a strong solution, then we
add the D-action � to a set Cs

1, which will help us to
determine the termination point of a loop. It is also
possible that the sub-planning graph levels off, in
which case it suggests that a strong cyclic solution
exists.

1 By default, the S-action is included in Cs.

337

Theorem 3.2 During a sub-planning for a failed effect
ef, if the planning graph levels off, then a strong cyclic
solution exists in a dead-end free domain.
Proof Outline: Since the domain is dead-end free, there
should be at least one path from any reachable state to
the goal state. However, level-off does take place and
the goal state is not reachable. This fact suggests that
there is no direct path leading to the goal state from ef.
To reach the goal state, it must go through a path
generated by some related D-actions. In addition, the
way of choosing the initial proposition level ensures
that all previous states in causal order before the state
enabling the sub-planning have been included for the
sub-planning. There must be a sequence of actions
transiting the state corresponding to ef to a certain state
sr that appears no later than the state enabling the sub-
planning in WGb. sr must be included in the initial
proposition level so that the planning graph can level
off. This typically forms a loop. .

To locate a state in the planning graph, we need to
locate the propositions involved in the state. We use
the level-membership (lms) function introduced in [11]
to facilitate the state detection. Let p be a proposition
that appears in proposition level i for the first time.
Then, lms(p) = min{i | Pi contains proposition p}.

Given a state s, function LevelId returns the
identifier of the first proposition level which contains s.

LevelId(s) = max(lms(p) | p � s)
In FIP, lms is implemented using a hash table to

help with efficient search. Initially, lms only contains
the information of the propositions in WGb and then
new propositions are appended to lms after a sub-plan
is generated and its sub-planning graph is finalized.
The computation of the appropriate state sr when level-
off takes place proceeds in the following steps as
shown in Figure 5.

 (1) Let Al be the last action level and 	be the set of propositions generated

by actions (do not include no-ops) in Al in the sub-planning graph.

(2) Compute �lid, p � = �max(lms(p) | p �), p�.

(3) Identify state sr such that p � sr and LevelId(sr) � lid.

(4) Treat sr as the goal and do back-chaining search to get a plan.

Figure 5 Computation steps for the repeated state

The idea is to find a proposition p that is generated

by some action and is closest to the goal (i.e., steps (1)
and (2)). Requiring p to be closest to the goal is to
improve the quality of the plan. Then, the state sr
containing p is located as indicated by the location of p.
sr becomes the new goal for the sub-planning.

After a plan is generated, the sub-planning graph is
finalized to include only actions in the plan and their

related propositions. Then, append the propositions
that are not included in WGb to lms and the proposition
levels that are after the level where the sub-planning is
enabled in WGb. This operation ensures that the newly
handled states in the sub-planning are accessible for
later sub-planning problems.

The plan generated in the sub-planning might still
be a weak plan, i.e., there might be D-actions involved
in it as shown in line 7 in Figure 4. In this case, the
previous process is applied recursively to the newly
generated weak plan until all the failed effects are
handled.

We use the tele-control joystick example to
illustrate how the second phase works. Two separate
planning graphs are shown in Figure 6. The graph in
the left portion is the backbone weak planning graph.
The sub-planning for the effect of receiving normal
command is shown in the right portion. The initial
proposition level is obtained based on P0 in WGb and
the first action level contains only the D-action,
D_ReadJoystick_CTL, as discussed in Section 3.2.1.

The sub-planning graph levels off, which means a
strong cyclic solution exists according to Theorem 3.2.
Following the steps in Figure 5, the previously handled
state included in the last proposition level in the sub-
planning graph is identified as “Empty � Acquired”,
which is the initial state of the backbone weak plan.
Therefore, the goal is set to “Empty � Acquired” and
results in a sub-plan “Send”.

A3

SD: Send
CL: D_ReadJoystick_CTL
TM: D_ReadJoystick_TM
CD: CloseJoystick

V

A: Acquired V: Avail
C: CTLCMD D: Closed
T: TMCMD S: Sent
E: Empty

SD

CD

SD

P0 A1 P1 A2 P2 P3

TM TM TM
T T

E E E

A A A

V

S

D

V

T

E

A

S

Backbone weak planning Graph WGb Sub-Planning graph for the effect of
normal command

CL
A A

V

C

E

A

V

C

E

S

SD

CL

SD

A

V

C

E

S

Level-off

E

CL

Figure 6: Planning Graph Expansion in the Second
Phase

After the planning graph expansion has been

completed and the remedial actions for each failed
effect have been determined, we can generate loop(s)
from the planning graph with the help of the following
two Propositions.

338

Proposition 3.1. A loop starts at the second
proposition level of the sub-planning graph which
levels off.
Proof outline: Because the sub-planning turns out to be
a strong cyclic solution, the application of the F-action
is the reason why a loop is formed. Hence, the loop
starts from the second proposition level which is
generated after the application of the F-action.

Proposition 3.2. Actions in Cs that have a path leading
to the given goal represent the exit point of the loop.
Proof outline: Level-off represents an endless loop,
which means that there is no direct path from the failed
effect to the goal state. Level-off takes place because
the related effects are not allowed to be included in the
current graph. This fact implies that the path resulting
from the failed effect must go through the paths
resulting from the related effects to reach the goal state
in a dead-end free domain. The actions in Cs can
generate such effects and result in paths to the goal.

After the loop boundary is identified, we use the
remedial actions for each failed effect to generate an
“if” branch. Then, the application of the S-action and
other D-actions in Cs after level-off represents the
nondeterministic action eventually generating the
effects leading to the goal. For example, the sub-plan in
Figure 6 is interpreted as “if (CTLCMD) {Send;}”.
Figure 7 illustrates the final loop construct.

ReadJoystick;
while(�TMCMD){
 if(CTLCMD)
 {Send; }
 ReadJoystick;
}

 negation
 of
 intended
 effect

Figure 7: Loop construct for the tele-control

example

4. Automated Loop Invariants Detection

A loop invariant is an assertion that is satisfied at

the start and at the end of each iteration of a loop and
contains important assertions for proving the
correctness of the loop upon termination. The proof of
the loop invariant includes the following three steps:

� Initialization: The loop invariant must be true
before the start of the loop;

� Maintenance: If the loop invariant is true
before an iteration of the loop, it must be true
before the next iteration;

� Termination: The loop invariant must still
hold when the loop terminates.

We present a systematic loop invariant discovery
approach by following the above three steps. We define
the following notations for specifying the problem:

Let loop L be identified in a sub-planning headed
for the failed effect ef. Let F-action �� generate the
failed effect ef. Let Pi be the proposition level enabling
this sub-planning problem in the backbone weak
planning graph and let “�0; �1; …; �k” be the sequence
of actions before Pi in the backbone weak plan. Then,
for initialization, we can obtain a set of propositions
that might be the loop invariant for L as follows.

LIL = � (s� , ��) (1)
where s� = � (… � (� (s0, �1), �2) … �k) is the state
enabling ��; s0 is the initial state of the planning
problem; and � is the state transition function defined
in Definition 2.1.

Theorem 4.1. The method given in (1) for choosing
LIL is correct for initialization.
Proof outline: According to Proposition 3.1, the loop
starts from the second proposition level Ps1 of the sub-
planning graph. (1) defines the state where the F-action
�� is applied. This state is contained in Ps1 according to
Section 3.2.1 and every proposition in the state is true
at the moment. Hence, they are possible loop invariants
right before the loop starts.

Next, we can determine the ending point of loop L
according to Proposition 3.2. Let a � Cs, where actions
in Cs can result in paths leading to the goal. Let Pj be
the proposition level immediately after the action level
where a is located in the planning graph. The set of
propositions LIL obtained in the previous step can be
refined as follows:

LIL = LIL � {p | (p, q) � �Pj for p � LIL and q
�add(a)} (2)

Theorem 4.2. The refinement of LIL given in (2) is
correct for termination.
Proof outline: In order to make LIL true upon
termination of the loop, no proposition in LIL can be
mutex with the add effects of a, where a � Cs and
action a can result in a path leading to the goal.

At this point, LIL is true before the loop starts and is
also true when the loop terminates. We should also
make LIL hold before each iteration of the loop starts
and also ensure that it holds before the next iteration
starts, i.e., maintenance. For the failed effect ef, let af1;
af2; …; afk be the sequence of remedial actions with af1
being the F-action generating ef, and s� be the state
enabling af1. Then LIL is refined as follows:

LIL = LIL � {p | (p, q) is mutex and p � LIL and q
�W = � (… � (� (s�, af1), af2) … afk)} (3)

where � is the state transition function defined in
Definition 2.1.

339

Theorem 4.3. The refinement of LIL given in (3) is
correct for maintenance.
Proof outline: The definition of W in (3) is the final
state resulting by the sequence of actions af1; af2; …;
afk. In order to make LIL true before the next iteration,
no propositions in LIL could be mutex with a
proposition in W. Since LIL is true before the first
iteration according to Theorem 4.1, by induction we
can prove that it will be true before every iteration by
following the updating rule of (3).

For the tele-control example, as shown in Figure 6,
we can obtain the initial value of LIL according to (1),
i.e., LIL = � (s0, CL) = {V, C, A}. According to (2), LIL
= {V, C, A} � {C} = {V, A} because “C” represents
“CTLCMD” which is mutex with the intended effect of
“TMCMD”. Finally, according to (3), LIL = {V, A} �
{V} = {A}. This is because � (� ({E, A}, CL), SD) =
{S, C, E, A} and “V” represents “Avail” that is mutex
with “E” that denotes “Empty”. Hence, the final loop
invariant is {A}. Obviously, this is an accurate and
meaningful result because the joystick will not work if
the handle of the device is lost.

4.1. Refining Invariants

The approach presented above may include

propositions that are independent of the concerned loop
as part of the loop invariant. For example, some
propositions that appear in the levels before the loop
starts may be generated by some actions. They may be
irrelevant to the loop under analysis. Therefore, they
may hold for (1), (2), and (3) and the proposed method
would recognize them as part of the loop invariants.

To avoid this situation, we use the following
heuristic method to refine the loop invariant.

Let Obja = {the set of objects involved in
instantiating the F-actions and their corresponding S-
action} and let Objp = {the set of objects involved in
instantiating the proposition p}. If Obja � Objp = �,
then report proposition p to be a possibly spurious
invariant.

4.2. Combining with other Techniques

The completeness of the discovered loop invariants

depends highly on how the planning domain is created
and how the planning problems are given. The
proposed approach cannot discover loop invariants if
the possible invariants are not modeled as propositions.
For example, a carefully conceived planning domain
can be created to solve the GCD (Greatest Common
Divisor) problem [6]. The generated plan is as follows:

 Compare(x, y);
while (not Equal(x,y)){
 if (Greater(y, x)){ Deduct (y, x);}
 else if (Greater(x, y)){ Deduct (x, y);}
 Compare(x, y);}

Here, “Deduct(x, y)” means “x – y”. As “Compare(x,
y)” can be issued anytime as long as two positive
integers are available, the planning problem does not
provide much extra information for discovering the
loop invariants. Daikon [4] is a well-known tool that is
capable of detecting loop invariants involving range
limits. It can detect the loop invariant of the GCD
problem by reporting the range limits, i.e., x > 0 and y
> 0. Of course, if the planning problem can present
Greater(x, 0) & Greater(y, 0) in the initial condition,
the proposed approach can discover the loop invariant
correctly. But this example shows that by combining
the above approach with other loop invariant detection
techniques, it can produce even more accurate and
meaningful loop invariants.

5. Related Works

In 1990s, deductive program synthesis methods

thrived and were once regarded as the key to achieving
automated program synthesis [14]. KIDS [19] and
AMPHION [21] are two successful representatives of
this approach. The advantage of deductive synthesis is
that the generated programs are correct-by-
construction. However, these general-purpose systems
are either not very efficient or not very powerful in
generating complex programs. Specware [20] extends
KIDS and employs stepwise refinement to transform
formal specifications into executable codes. Planware
[1] is an extension of Specware with focus on
generating high-performance schedulers from
specifications of scheduling problems. Planware
supports automatic construction of a domain theory for
a particular scheduling problem. Its performance is
much better than that of KIDS. But the cost is that it
only supports sharply restricted domains [1].

Based on AMPHION, NASA developed domain
specific generators that separate verifications from
program generation. For example, loop invariants are
used to verify the correctness of the generated Kalman
Filters in [8].

Loop invariants play an important role in specifying
the behaviors of programs that include loops. Loop
invariants are helpful in both the initial system
development activities as well as subsequent system
maintenance tasks. Being aware of loop invariants,
developers are unlikely to violate the properties that
must be preserved in a program.

340

Daikon [4] is a well known tool for dynamically
detecting program invariants. It infers possible
invariants in a program by really running the program.
First, the interested variables are identified and
instrumented. Then, a set of test cases is collected, over
which the program runs. Finally, invariants that behave
consistently during the tests are reported to the
programmer.

Daikon suffers from the problem of reporting too
many invariants, some of which may be spurious. The
work in [10] proposed a new structural coverage
criterion to improve the accuracy of the dynamically
detected invariants. Daikon is executed first to obtain a
set of likely invariants. Then, the invariant-coverage
suites for these likely invariants are generated. After
Daikon runs over the suites, some of the false
invariants are removed.

All dynamic approaches suffer from the inherent
problem that the quality of the detected invariants relies
substantially on the quality and completeness of test
cases [4]. They are not theoretically sound. On the
other hand, theorem proving is extensively used to
facilitate the loop invariant detection. In [13], the loop-
invariant computations are initiated only when there is
a need for stronger loop invariant. Hence, this is an
iterative process by first generating the verification
condition which is sent to a theorem prover to prove its
validity. If it fails, the set of candidate traces
responsible for the failure are passed to an abstract
interpreter on the loops so that it might find stronger
loop invariants that allow the theorem prover to make
more progress toward a proof. Although this is a sound
technique, its scalability and the degree of easy-to-use
still remain unclear.

Loop invariants are also important for program
synthesis because of the possibility that some latent
defects in the program synthesis tool may result in the
generation of incorrect code. Hence, they use
verification technique to guarantee the correctness [8].
As loop invariants are indispensable in automated
program verification, the ability to automatically detect
loop invariants is very critical. Our approach is sound
and can ensure the validity of the detected loop
invariants, and, therefore, greatly facilitates high-
confidence system verification techniques.

6. Conclusions and Future Work

In this paper, we have presented an automated loop

invariant discovery approach via planning graph
analysis. Loop invariants can be discovered as a by-
product of the planning process. Specifically, after a
plan is generated, the final planning graph can be used

for loop invariants discovery. Two propositions are
presented to help identify the loop boundaries. Then,
loop invariants are computed in three steps, i.e.,
initialization, maintenance, and termination, which are
standard proof steps for validating loop invariants. The
proposed approach has rigorous theoretical basis and is
sound for loop invariant discovery. Although the focus
of the paper is on loop invariants, the proposed
approach can help discover all kinds of program
invariants by following the same approach.

As the proposed approach exploits only Graphplan’s
intrinsic features, it can be seamlessly applied to
Graphplan’s large number of variants, such as the well-
known FF [11]. As shown in Figure 1, a hierarchical
invariants discovery structure can be formed with the
proposed approach addressing the invariant discovery
for the glue code and leveraging the capabilities of
other invariant detection techniques, e.g., Daikon [4],
as needed to identify appropriate loop invariants for the
underlying components. This can greatly facilitate
high-confidence system verification process and also
improve the system’s reliability. In addition, AI
planning is extensively used in service-oriented
composition and dynamic workflow generation. The
proposed approach can be applied to this area also.

Some future research directions include further
analysis of the informative structure of planning graphs
and use of the loop invariants to verify the
corresponding programs. Planning graphs can also
provide more information for discovering other types
of invariants, such as class and service invariants, for
comprehensive system verification.
7. References
[1] Blaine, L., Gilham, L., Liu, J., Smith, D.R., and

Westfold, S. "Planware -- Domain-Specific Synthesis of
High-Performance Schedulers", Proceedings of the
Thirteenth Automated Software Engineering Conference,
IEEE Computer Society Press, Los Alamitos, CA, pp.
270-280.

[2] Blum, A. and Furst, M. 1997. “Fast planning through
planning graph analysis,” Artificial Intelligence, 90:281–
300.

[3] Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. “Weak, strong, and strong cyclic planning via
symbolic model checking,” Artificial Intelligence,
147(1–2):35–84.

[4] Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.
2001. “Dynamically discovering likely program
invariants to support program evolution,” IEEE Trans
Softw Eng 27(2):1–25

[5] Fu, J., Bastani, F. B., and Yen, I. 2006. “Automated AI
planning and code pattern based code synthesis,” ICTAI
2006, pp. 540–546.

341

[6] Fu, J., Bastani, F. B., and Yen, I. 2007. “Iterative
planning in the context of automated code synthesis,”
COMPSAC 2007: 251–259.

[7] Fu, J., Bastani, F. B., Ng, V., Yen, I., and Zhang, Y.
2008. “FIP: A fast planning–graph–based iterative
planner,” Technical Report, UTDCS–03–08, UT–
DALLAS.

[8] Gamboa, R., Cowles, J., Baalen, J.V. 2003. “On the
verification of synthesized Kalman filters,” 4th
International Workshop on the ACL2 Theorem Prover
and Its Applications.

[9] Gazen, C.; Knoblock, C. A. 1997. “Combining the
expressivity of UCPOP with the efficiency of
Graphplan,” In Proceedings of ECP–97, 221–233.

[10] Gupta, N. and Heidepriem, Z.V. 2003. “A new
structural coverage criterion for dynamic detection of
program invariants,” In Proc. 18th IEEE International
Conference on Automated Software Engineering, pp. 49–
58

[11] Hoffmann J. and Nebel B. 2001. “The FF planning
system: Fast plan generation through heuristic search,” in
Journal of Artificial Intelligence Research, Volume 14,
253–302.

[12] Kuter, U. 2004. “Pushing the limits of AI planning,” In
Proc. of the Doctoral Consortium at the 14th
International Conference on Automated Planning and
Scheduling (ICAPS–04).

[13] Leino K. and Logozzo F. 2005. “Loop invariants on
demand,” APLAS 2005, LUNCS 3780, pp. 119–134.

[14] Loveland, D. W. 2000. “Automated deduction:
achievements and future directions”, Commun. ACM, 43,
11es (Nov. 2000), 10.

[15] Malik Ghallab, Dana Nau, Paolo Traverso, Automated
Planning: Theory and Practice, Morgan Kaufmann
(2004), pp. 113–139.

[16] McDermott D., et al. 2004. “The PDDL Planning
Domain Definition Language,” The AIPS–2004 Planning
Competition Committee.

[17] Mitra, D. and Bond, W.P. 2002. “Component–oriented
programming as an AI–planning problem”, In Proc. of
the 15th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and
Expert Systems: Developments in Applied Artificial
Intelligence, pp. 567–574.

[18] Rao J. and Su X. 2004. “A survey of automated web
service composition methods,” In Proc. of the First
International Workshop on Semantic Web Services and
Web Process Composition, SWSWPC 2004, San Diego,
California.

[19] Smith, D. R. 1990. “KIDS: A Semiauomatic Program
Development System”. IEEE Transactions on Software
Engineering. VOL. 16, NO. 9. 1990.

[20] Srinivas, Y. V. and Jullig, R. 1995. Specware: Formal
support for composing software. In B. Moeller, editor,
Proceedings of the Conference on Mathematics of
Program Construction, pages 399–422. LNCS 947,
Springer-Verlag, Berlin.

[21] Stickel, M., Waldinger, R., Lowry, M., Pressburger, T.,
and Underwood, I. 1994. “Deductive composition of
astronomical software from subroutine libraries,”
Proceedings 12th International Conference on
Automated Deduction (CADE–12), Nancy, France.

[22] Yen, I., Bastani, F., Mohamed, F., Ma, H., and Linn, J.
2002. “Application of AI planning techniques to
automated code synthesis and testing,” Proceedings of
the 14th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI'02), pp. 131–137.

342

