class Set: public List {
public:
 Set(); //Constructor
 Set(istream& i); //Constructor, scan stream i into the Set
 ~Set(); //Destructor
 void Intersection(Set& s1, Set& s2); //Intersection = \{ s1 \cap s2 \}
 void Union(Set& s1, Set& s2); //s1 \cup s2
 void Difference(Set& M, Set& S); //M \setminus S = \{ m \mid m \in M \text{ and } m \notin S \}
};

Figure 1. class Set.

1. class Set is derived from class List. class Set defines Set operations over the list given by class List.
2. Constructor Set explicitly calls the constructor for list to create a list on which the set is based. An empty set (List) is created.
3. Constructor Set(istream& i) creates a set having the unique integers in the file whose name is given by parameter fn.
4. Destructor ~Set implicitly calls destructor ~List and deletes all elements of the set (list).
5. Member function Print formats and prints the set according to the specifications given in project p06.
6. Member function Union forms the union of sets s1 and s2. Note that Union is capitalized to avoid the conflict with the reserve word union.
7. Member function Intersection finds the difference of set minuend – set subtrahend. All elements that are members of both minuend and subtrahend are removed from minuend to form the difference.

Figure 2. Constructor Set.

//Member function Intersection finds the intersection of sets s1 and s2
//The intersection is composed of elements that are common to both sets.
//This implementation assumes that this set is empty prior to the invocation of member function Intersection.
void Set::Intersection(Set& s1, Set& s2)
{
 Empty();
 for (s1.First(); !s1.IsEol(); s1.Next())
 {
 int v = s1.ElementValue();
 if (s2.IsMember(v)) Insert(v);
 }
}

Figure 3. Member function Intersection.