Chapter 9
Heuristics in Planning

Dana S. Nau

CMSC 722, AI Planning
University of Maryland, Fall 2004
Abstract-search(u)
 if Terminal(u) then return(u)
 $u ←$ Refine(u) ;; refinement step
 $B ←$ Branch(u) ;; branching step
 $B' ←$ Prune(B) ;; pruning step
 if $B' = ∅$ then return(failure)
 nondeterministically choose $v ∈ B'$
 return(Abstract-search(v))
end
Making it Deterministic

Depth-first-search(u)
 if Terminal(u) then return(u)
 $u \leftarrow$ Refine(u) ;; refinement step
 $B \leftarrow$ Branch(u) ;; branching step
 $C \leftarrow$ Prune(B) ;; pruning step
 while $C \neq \emptyset$ do
 $v \leftarrow$ Select(C) ;; node-selection step
 $C \leftarrow C - \{v\}$
 $\pi \leftarrow$ Depth-first-search(v)
 if $\pi \neq$ failure then return(π)
 end
return(failure)
Node-Selection Heuristic

- Suppose we’re searching a tree in which each edge \((s, s')\) has a cost \(c(s, s')\)
 - If \(p\) is a path, let \(c(p) = \text{sum of the edge costs}\)
 - For classical planning, this is the length of \(p\)

- For every state \(s\), let
 - \(g(s) = \text{cost of the path from } s_0 \text{ to } s\)
 - \(h^*(s) = \text{least cost of all paths from } s \text{ to goal nodes}\)
 - \(f^*(s) = g(s) + h^*(s) = \text{least cost of all paths from } s_0 \text{ to goal nodes that go through } s\)

- Suppose \(h(s)\) is an estimate of \(h^*(s)\)
 - Let \(f(s) = g(s) + h(s)\)
 » \(f(s)\) is an estimate of \(f^*(s)\)
 - \(h\) is admissible if for every state \(s\), \(0 \leq h(s) \leq h^*(s)\)
 - If \(h\) is admissible then \(f\) is a lower bound on \(f^*\)
The A* Algorithm

- A* on trees:

 loop

 choose the leaf node \(s \) such that \(f(s) \) is smallest

 if \(s \) is a solution then return it and exit

 expand it (generate its children)

- On graphs, A* is more complicated

 - additional machinery to deal with multiple paths to the same node

- If a solution exists (and certain other conditions are satisfied), then:

 - If \(h(s) \) is admissible, then A* is guaranteed to find an optimal solution

 - The more “informative” the heuristic is (i.e., the closer it is to \(h^* \)), the smaller the number of nodes A* expands

 - If \(h(s) \) is within \(c \) of being admissible, then A* is guaranteed to find a solution that’s within \(c \) of optimal
Heuristic Functions for Planning

- $\Delta^*(s,p)$: minimum distance from state s to a state containing p
- $\Delta^*(s,s')$: minimum distance from state s to a state containing every p in s'
- For $i = 0, 1, 2, \ldots$ we will define the following functions:
 - $\Delta_i(s,p)$: an estimate of $\Delta^*(s,p)$
 - $\Delta_i(s,s')$: an estimate of $\Delta^*(s,s')$
 - $h_i(s) = \Delta_i(s,g)$, where g is the goal
Heuristic Functions for Planning

- $\Delta_0(s,s') = \text{what we get if we pretend that}$
 - Negative preconditions and effects don’t exist
 - The cost of achieving a set of preconditions $\{p_1, \ldots, p_n\}$ is the sum of the costs of achieving each p_i separately

\[
\begin{align*}
\Delta_0(s,p) &= 0 & \text{if } p \in s, \\
\Delta_0(s,p) &= \infty & \text{if } \forall a \in A, p \notin \text{effects}^+(a), \text{ and } p \notin s, \\
\Delta_0(s,g) &= 0 & \text{if } g \subseteq s, \\
&\text{otherwise:} \\
\Delta_0(s,p) &= \min_a \{1 + \Delta_0(s, \text{precond}^+(a)) \mid p \in \text{effects}^+(a)\} \\
\Delta_0(s,g) &= \sum_{p \in g} \Delta_0(s,p)
\end{align*}
\]

- $\Delta_0(s,s') = \text{not admissible, but we don’t care}$
 - We’re going to do a depth-first search, not A*
Computing Δ_0

- Given s, can compute $\Delta_0(s, p)$, for every proposition p:

 \[
 \text{Delta}(s)
 \]
 for each p do: if $p \in s$ then $\Delta_0(s, p) \leftarrow 0$, else $\Delta_0(s, p) \leftarrow \infty$
 \[
 U \leftarrow \{s\}
 \]
 iterate
 for each a such that $\exists u \in U$, precond(a) $\subseteq u$ do
 \[
 U \leftarrow \{u\} \cup \text{effects}^+(a)
 \]
 for each $p \in \text{effects}^+(a)$ do
 \[
 \Delta_0(s, p) \leftarrow \min\{\Delta_0(s, p), 1 + \sum_{q \in \text{precond}(a)} \Delta_0(s, q)\}
 \]
 until no change occurs in the above updates
 end

- From this, can compute $h_0(s) = \Delta_0(s, g) = \sum_{p \in g} \Delta_0(s, p)$
Heuristic Forward Search

Heuristic-forward-search(\(\pi, s, g, A\))

if \(s\) satisfies \(g\) then return \(\pi\)

\(options \leftarrow \{a \in A \mid a\ \text{applicable to} \ s\}\)

for each \(a \in options\) do Delta(\(\gamma(s, a)\))

while \(options \neq \emptyset\) do

\(a \leftarrow \text{argmin}\{\Delta_0(\gamma(s, a), g) \mid a \in options\}\)

\(options \leftarrow options - \{a\}\)

\(\pi' \leftarrow \text{Heuristic-forward-search}(\pi.a, \gamma(s, a), g, A)\)

if \(\pi' \neq \text{failure}\) then return(\(\pi'\))

return(failure)

- This is depth-first search, so admissibility is irrelevant
- This is roughly how the HSP planner works
 - First successful use of an A*-style heuristic in classical planning
Heuristic Backward Search

- HSP can also search backward

```
Backward-search(\pi, s_0, g, A)
  if s_0 satisfies g then return(\pi)
  options ← \{a ∈ A | a relevant for g\}
  while options ≠ ∅ do
    a ← arg\min\{\Delta_0(s_0, γ^{-1}(g, a)) | a ∈ options\}
    options ← options \{a\}
    π′ ← Backward-search(a.\pi, s_0, γ^{-1}(g, a), A)
    if π′ ≠ failure then return(π′)
  end
return failure
```
An Admissible Heuristic

\[\Delta_0(s, p) = 0 \quad \text{if} \quad p \in s, \]
\[\Delta_0(s, p) = \infty \quad \text{if} \quad \forall a \in A, p \not\in \text{effects}^+(a), \quad \text{and} \quad p \not\in s, \]
\[\Delta_0(s, g) = 0 \quad \text{if} \quad g \subseteq s, \]
\[\text{otherwise:} \]
\[\Delta_0(s, p) = \min_a \{1 + \Delta_0(s, \text{precond}^+(a)) \mid p \in \text{effects}^+(a) \} \]
\[\Delta_0(s, g) = \sum_{p \in g} \Delta_0(s, p) \]

- \(\Delta_1 \): like \(\Delta_0 \) except that \(\Delta_1(s,g) = \max_{p \in g} \Delta_0(s,p) \)
 - This heuristic is admissible; thus it could be used with A*
 - It is not very informative
A More Informed Heuristic

- Instead of computing the maximum distance to each p in g, compute the maximum distance to each pair $\{p, q\}$ in g:

\[
\Delta_2(s, p) = \min_a \{1 + \Delta_2(s, \text{precond}(a)) \mid p \in \text{effects}^+(a)\}
\]
\[
\Delta_2(s, \{p, q\}) = \min \{ \\
\quad \min_a \{1 + \Delta_2(s, \text{precond}(a)) \mid \{p, q\} \subseteq \text{effects}^+(a)\} \\
\quad \min_a \{1 + \Delta_2(s, \{q\} \cup \text{precond}(a)) \mid p \in \text{effects}^+(a)\} \\
\quad \min_a \{1 + \Delta_2(s, \{p\} \cup \text{precond}(a)) \mid q \in \text{effects}^+(a)\} \}
\]
\[
\Delta_2(s, g) = \max_{p, q} \{\Delta_2(s, \{p, q\}) \mid \{p, q\} \subseteq g\}
\]
More Generally, …

Recall that $\Delta^*(s, g)$ is the true minimal distance from a state s to a goal g. Δ^* can be computed (albeit at great computational cost) according to the following equations:

$$
\Delta^*(s, g) = \begin{cases}
0 & \text{if } g \subseteq s, \\
\infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \text{ and} \\
\min_a \{1 + \Delta^*(s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} & \text{otherwise.}
\end{cases}
$$

(9.4)

From Δ^*, let us define the following family Δ_k, for $k \geq 1$, of heuristic estimates:

$$
\Delta_k(s, g) = \begin{cases}
0 & \text{if } g \subseteq s, \\
\infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \\
\min_a \{1 + \Delta^*(s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} & \text{if } |g| \leq k, \\
\max_{g'} \{\Delta_k(s, g') \mid g' \subseteq g \text{ and } |g'| = k\} & \text{otherwise.}
\end{cases}
$$

(9.5)

[Text highlighted as I think this is inconsistent with Δ_1 and Δ_2 defined earlier]
Complexity of Computing the Heuristic

- Takes time $\Omega(n^k)$
- If $k \geq \max(|g|, \max\{|\text{precond}(a)| : a \text{ is an action}\})$ then computing $\Delta(s,g)$ is as hard as solving the entire planning problem
Getting Heuristic Values from a Planning Graph

Recall how GraphPlan works:

loop

\[\text{Graph expansion: this takes polynomial time} \]

extend a “planning graph” forward from the initial state until we have achieved a necessary (but insufficient) condition for plan existence

\[\text{Solution extraction: this takes exponential time} \]

search backward from the goal, looking for a correct plan if we find one, then return it

repeat
Using Planning Graphs to Compute $h(s)$

- In the graph, there are alternating layers of ground literals and actions.
- The number of “action” layers is a lower bound on the number of actions in the plan.
- Construct a planning graph, starting at s.
- $\Delta^g(s,p) = \text{level of the first layer that “possibly achieves” } p$.
- $\Delta^g(s,g)$ is very close to $\Delta_2(s,g)$.
 - $\Delta_2(s,g)$ counts each action individually.
 - $\Delta^g(s,g)$ groups together the independent actions in a layer.
The FastForward Planner

- Use a heuristic function similar to \(h(s) = \Delta^g(s, g) \)
 - Some ways to improve it (I’ll skip the details)
- Don’t want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

 until we have a solution, do
 expand the current state \(s \)
 \(s := \) the child of \(s \) for which \(h(s) \) is smallest
 (i.e., the child we think is closest to a solution)

- There are some ways to improve this (I’ll skip the details)
- Can’t guarantee how fast it will find a solution, or how good a solution it will find
 - However, it works pretty well on many problems
AIPS-2000 Planning Competition

- FastForward did quite well
- In the this competition, all of the planning problems were classical problems
- Two tracks:
 - “Fully automated” and “hand-tailored” planners
 - FastForward participated in the fully automated track
 - It got one of the two “outstanding performance” awards
 - Large variance in how close its plans were to optimal
 - However, it found them very fast compared with the other fully-automated planners
2002 International Planning Competition

- Among the automated planners, FastForward was roughly in the middle
- LPG (graphplan + local search) did much better, and got a “distinguished performance of the first order” award

- It’s interesting to see how FastForward did in problems that went beyond classical planning
 » Numbers, optimization
- Example: Satellite domain, numeric version
 - A domain inspired by the Hubble space telescope (a lot simpler than the real domain, of course)
 » A satellite needs to take observations of stars
 » Gather as much data as possible before running out of fuel
 - Any amount of data gathered is a solution
 » Thus, FastForward always returned the null plan
2004 International Planning Competition

- FastForward’s author was one of the competition chairs
 - Thus FastForward did not participate
Heuristics for Plan-Space Planning

- How to select the next flaw to work on?
Heuristics for Plan-Space Planning

- Need a *refinement* heuristic

Abstract-search\((u)\)

\[
\begin{align*}
\text{if } \text{Terminal}(u) \text{ then return}(u) \\
\ u \leftarrow \text{Refine}(u) \quad ;; \quad \text{refinement step} \\
\ B \leftarrow \text{Branch}(u) \quad ;; \quad \text{branching step} \\
\ B' \leftarrow \text{Prune}(B) \quad ;; \quad \text{pruning step} \\
\text{if } B' = \emptyset \text{ then return}(\text{failure}) \\
\text{nondeterministically choose } v \in B' \\
\text{return}(\text{Abstract-search}(v)) \\
\end{align*}
\]

One Possible Heuristic

- Fewest Alternatives First (FAF)
Do Others Work Better?

- Sometimes yes, sometimes no
- Limits to how good *any* flaw-selection heuristic can do
Serializing and AND/OR Tree

- The search space is an AND/OR tree

- Deciding what flaw to work on next = serializing this tree (turning it into a state-space tree)
 - at each AND branch, choose a child to expand next, and delay expanding the other children
One Serialization

Diagram showing a partial plan π, with actions a_1, a_2, a_3, and a_4 leading to different partial plans π_{11} and π_{12}, with constraints on the order of actions a and b.
Another Serialization
Why Does This Matter?

- Different refinement strategies produce different serializations
 - the search spaces have different numbers of nodes
- In the worst case, the planner will search the entire serialized search space
- The smaller the serialization, the more likely that the planner will be efficient

- One pretty good heuristic: fewest alternatives first
How Much Difference Can the Refinement Strategy Make?

- Case study: build an AND/OR graph from repeated occurrences of this pattern:

- Example:
 - number of levels $k = 3$
 - branching factor $b = 2$

- Analysis:
 - Total number of nodes in the AND/OR graph is $n = \Theta(b^k)$
 - How many nodes in the best and worst serializations?
Case Study, Continued

- The best serialization contains $\Theta(b^{2^k})$ nodes
- The worst serialization contains $\Theta(2^k b^{2^k})$ nodes
 - The size differs by an exponential factor, but the best serialization still is exponentially large
 - To do better, need good node selection, branching, pruning